干货满满的Python知识,学会这些你也能成为大牛

目录

1. 爬取网站数据

2. 数据清洗与处理

3. 数据可视化

4. 机器学习模型训练

5. 深度学习模型训练

6. 总结


1. 爬取网站数据

在我们的Python中呢,使用爬虫可以轻松地获取网站的数据。可以使用urllib、requests、BeautifulSoup等库进行数据爬取和处理。以下是一段爬取天气信息的示例代码,欧蕾欧蕾欧蕾蕾:

import requests
from bs4 import BeautifulSoupurl = 'https://www.weather.com/zh-CN/weather/hourbyhour/l/China+Beijing+Beijing?canonicalCityId=4a7d9ad7fc0cbd7f58d22b2f3d5c3cd9eb520a9b49f797290e3a8ae30e23f0e9'
res = requests.get(url)
soup = BeautifulSoup(res.text, 'html.parser')for hour in soup.select('.twc-hourly-forecast__table .twc-sticky-col.hourly-time > span'):print(hour.text)

这段代码通过requests库获取网站的HTML内容,然后使用BeautifulSoup库解析HTML并进行数据提取。通过CSS选择器定位到需要的信息,并进行输出滴昂。

2. 数据清洗与处理

在获取到数据后,需要去对俺们的数据进行清洗和处理。这包括数据去重、缺失值填充、数据类型转换等。以下是一段简单的数据清洗和处理示例代码:

import pandas as pd
import numpy as np# 读取CSV文件
df = pd.read_csv('data.csv')# 去除重复数据
df.drop_duplicates(inplace=True)# 填充缺失值
df.fillna(value={'age': np.mean(df['age'])})# 数据类型转换
df['age'] = df['age'].astype(int)

这段代码使用pandas库读取CSV文件,并对数据进行去重、缺失值填充、数据类型转换等操作。这些操作可以帮助我们对数据进行清洗和处理,使得数据更加滴规范化和易于分析。

3. 数据可视化

在对数据进行清洗和处理后,我们需要对数据进行可视化。可视化可以帮助我们更好滴理解数据,并发现数据中的规律。以下是一段简单的数据可视化示例代码:

import matplotlib.pyplot as plt# 读取CSV文件
df = pd.read_csv('data.csv')# 绘制散点图
plt.scatter(df['age'], df['score'])# 设置图表标题和坐标轴标签
plt.title('Age vs. Score')
plt.xlabel('Age')
plt.ylabel('Score')# 显示图表
plt.show()

这段代码使用matplotlib库绘制了一个散点图,通过设置标题、坐标轴标签等属性,使得图表更加清晰易懂。这个简单的示例可以帮助我们了解如何在Python中进行数据可视化。

4. 机器学习模型训练

在Python中,使用机器学习模型可以对数据进行预测和分类。可以使用scikit-learn等库进行机器学习模型的构建和训练。以下是一个简单的线性回归模型训练示例:

from sklearn.linear_model import LinearRegression# 读取CSV文件
df = pd.read_csv('data.csv')# 提取特征和标签
X = df[['age']]
y = df['score']# 构建线性回归模型
model = LinearRegression()# 训练模型
model.fit(X, y)# 输出模型系数和截距
print(model.coef_)
print(model.intercept_)

这段代码使用scikit-learn库构建了一个线性回归模型,使用读取CSV文件提取特征和标签。然后使用fit()方法训练模型,并输出模型系数和截距。这个简单的示例可以帮助我们了解如何在Python中进行机器学习模型的训练。

5. 深度学习模型训练

在Python中,使用深度学习模型可以对更加复杂的数据进行预测和分类。可以使用TensorFlow、Keras等库进行深度学习模型的构建和训练。以下是一个简单的MNIST手写数字识别模型训练示例:

import tensorflow as tf
from tensorflow import keras# 读取MNIST数据集
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()# 将数据集归一化
x_train = x_train / 255.0
x_test = x_test / 255.0# 构建深度学习模型
model = keras.Sequential([keras.layers.Flatten(input_shape=(28, 28)),keras.layers.Dense(128, activation='relu'),keras.layers.Dropout(0.2),keras.layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5)# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print('Test accuracy:', test_acc)

这段代码使用TensorFlow和Keras库构建了一个简单的MNIST手写数字识别模型。通过读取MNIST数据集,使用Sequential模型构建深度学习模型并编译模型。然后使用fit()方法训练模型,并使用evaluate()方法评估模型。这个示例可以帮助我们了解如何在Python中进行深度学习模型的训练。

6. 总结

我们的宝贝Python在数据处理、机器学习、深度学习等方面都有非常强大的应用。在使用Python进行编程时,我们可以使用各种各样的库来完成我们的任务。本文介绍了爬取网站数据、数据清洗与处理、数据可视化、机器学习模型训练和深度学习模型训练等几个示例。

制作不易

求三连喔

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/33872.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(kubernetes)k8s常用资源管理

目录 k8s常用资源管理 1、创建一个pod 1)创建yuml文件 2)创建容器 3)查看所有pod创建运行状态 4)查看指定pod资源 5)查看pod运行的详细信息 6)验证运行的pod 2、pod管理 1)删除pod 2…

校验 GPT-4 真实性的三个经典问题:快速区分 GPT-3.5 与 GPT-4,并提供免费测试网站

现在已经有很多 ChatGPT 的套壳网站,以下分享验明 GPT-4 真身的三个经典问题,帮助你快速区分套壳网站背后到底用的是 GPT-3.5 还是 GPT-4。 大家可以在这个网站测试:https://ai.hxkj.vip,免登录可以问三条,登录之后无限…

“深入解析JVM:探索Java虚拟机的工作原理和优化技巧“

标题:深入解析JVM:探索Java虚拟机的工作原理和优化技巧 摘要:Java虚拟机(JVM)作为Java语言的核心,承担着将Java字节码转化为可执行代码的重要任务。本文将深入探索JVM的工作原理和优化技巧,帮助…

STM32 F103C8T6学习笔记1:开发环境与原理图的熟悉

作为一名大学生,学习单片机有一段时间了,也接触过嵌入式ARM的开发,但从未使用以及接触过STM32C8T6大开发使用,于是从今日开始,将学习使用它~ 本文介绍STM32C8T6最小系统开发环境搭建注意问题,STM32C8T6单片…

JAVA设计模式汇总

文章目录 一、设计模式分为三大类二、设计模式的六大原则三、汇总 一、设计模式分为三大类 创建型模式共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。 结构型模式共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式…

【Docker晋升记】No.2 --- Docker工具安装使用、命令行选项及构建、共享和运行容器化应用程序

文章目录 前言🌟一、Docker工具安装🌟二、Docker命令行选项🌏2.1.docker run命令选项:🌏2.2.docker build命令选项:🌏2.3.docker images命令选项:🌏2.4.docker ps命令选项…

20.5 HTML 媒体

1. video视频标签 video视频标签: 是HTML中用于在网页上嵌入视频的元素.常用的视频标签属性: - src属性: 指定视频文件的URL地址. - controls属性: 用于显示视频播放控件(如播放按钮, 进度条等), 使用户能够控制视频的播放. - width和height: 指定视频的宽度和高度. - autopla…

Map Reduce教程_编程入门自学教程_菜鸟教程-免费教程分享

教程简介 MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语…

【Unity实战系列】Unity的下载安装以及汉化教程

君兮_的个人主页 即使走的再远,也勿忘启程时的初心 C/C 游戏开发 Hello,米娜桑们,这里是君兮_,怎么说呢,其实这才是我以后真正想写想做的东西,虽然才刚开始,但好歹,我总算是启程了。今天要分享…

3.4 Spring MVC注解

注解名称 注解说明 RequestMapping 用来处理请求地址映射的注解,可以在接口、类和方法上使用 value属性 表示请求地址,与path属性一致 method属性 表示接收HTTP请求方法,默认接收所有请求方法,请求包括GET、POST、PUT、DEL…

Java-网络编程

TCP TCP(Transmission Control Protocol)是一种在计算机网络中用于可靠数据传输的协议。它是一种面向连接的协议,确保数据在发送和接收之间的可靠性和有序性。以下是TCP是如何工作的简要概述: 建立连接: 当两台计算机…

使用RecyclerView构建灵活的列表界面

使用RecyclerView构建灵活的列表界面 1. 引言 在现代移动应用中,列表界面是最常见的用户界面之一,它能够展示大量的数据,让用户可以浏览和操作。无论是社交媒体的动态流、商品展示、新闻列表还是任务清单,列表界面都扮演着不可或…

第一百二十四天学习记录:C++提高:STL-deque容器(上)(黑马教学视频)

deque容器 deque容器基本概念 功能: 双端数组,可以对头端进行插入删除操作 deque与vector区别 vector对于头部的插入删除效率低,数据量越大,效率越低 deque相对而言,对头部的插入删除速度比vector快 vector访问元素的…

LeetCode150道面试经典题--同构字符串(简单)

1.题目 给定两个字符串 s 和 t ,判断它们是否是同构的。如果 s 中的字符可以按某种映射关系替换得到 t ,那么这两个字符串是同构的。每个出现的字符都应当映射到另一个字符,同时不改变字符的顺序。不同字符不能映射到同一个字符上&#xff0c…

【LeetCode 算法】Minimum Falling Path Sum II 下降路径最小和 II-动态规划-SP

文章目录 Minimum Falling Path Sum II 下降路径最小和 II问题描述:分析代码DP Tag Minimum Falling Path Sum II 下降路径最小和 II 问题描述: 给你一个 n x n 整数矩阵 grid ,请你返回 非零偏移下降路径 数字和的最小值。 非零偏移下降路…

ppt怎么压缩?试试这样压缩文件

当PPT文件体积过大时,打开的速度就会很慢,演示的时候刘程度也会受到影响,其次,现在很多平台对于上传的文件是有大小限制的,比如超过100M的文件就无法上传、发送等等,那么,怎么才能压缩PPT文件呢…

VR全景乡村旅游浇灭乡愁,近距离体验自然之美

说起乡愁,可能每位漂泊的游子都有所感受,在外漂泊数十载,每到佳节倍思亲,家乡的一草一木都浮现在脑海中,满载着儿时的回忆。为了留住那抹儿时回忆,VR全景助力数字化乡村建设。 乡村振兴是国家的重大战略&am…

ChatGPT将会成为强者的外挂?—— 提高学习能力

目录 前言 一、提高学习力 🧑‍💻 1. 快速找到需要的知识 2. 组合自己的知识体系 3. 内化知识技能 二、提问能力❗ 三、思维、创新能力 🌟 1. 批判性思维 1.1 八大基本结构进行批判性提问 1.2 苏格拉底的提问分类方法 2. 结构化思…

功能上新|全新GPU性能优化方案

GPU优化迎来了全新的里程碑!我们深知移动游戏对高品质画面的追求日益升温,因此UWA一直着眼于移动设备GPU性能优化,以确保您的游戏体验尽善尽美。然而,不同GPU芯片之间的性能差异及可能导致的GPU瓶颈问题,让优化工作变得…

nvm的介绍和常用命令

一. 介绍 nvm(Node Version Manager)是一个用于管理多个Node.js版本的工具,它允许你在同一台机器上安装和切换不同的Node.js版本。以下是nvm的一些详细介绍: 安装和配置:你可以从nvm的GitHub仓库中下载并安装nvm。安装…