200 多家明星企业,20 位著名投资机构顶级投资人共同参与!「新智造成长榜」致力于发掘 AI 领域有 “三年十倍” 成长潜力的创新公司,下一波 AI 独角兽,会有你么?点击阅读原文了解详情!
雷锋网按:最近一段时间微软很忙。继上周一个教育主题发布会上推出的 Surface Laptop、Windows 10 S 后,今晚微软 Build 2017 大会正式召开。今天 HoloLens 也正式进入中国,而再往后的 5 月底,微软还会在上海举办一场活动,据说有可能是发布 Surface Pro 5。
而今晚发布会上的微软更忙,Keynote 环节长达三个小时,CEO 萨蒂亚 · 纳德拉、云服务部门负责人 Scott Guthrie,以及人工智能与研究部门负责人沈向洋轮番登台。会上发布了一系列你可能不太感兴趣的产品,因为它们主要面向开发者,但它们无疑会影响到微软的未来。
其实从上台的部门负责人就可以看出,这次大会的主题是云与 AI,但更重要的是无处不在的云,与无处不在的 AI。
智能云与智能边缘
一开场,纳德拉以自己一张连女儿都没认不出来的 1992 年的照片作为笑料,来展现世界发展变化之快。
他表示,在计算力的飞速发展中,微软要做的就是将计算的能力赋权给普通用户,让技术为更多用户所用,让计算机视觉、文本理解等技术变得更加普惠(inclusive),同时构建对技术的信任。这也是微软 “云优先,移动优先” 战略的出发点。
目前,Windows 10 的月活跃设备数是 5 亿,Cortana 小娜每月有 1.4 亿用户,Office 365 的月活用户是 1 亿,财富 500 强企业中 90% 都使用微软的云服务。
在这种情况下,纳德拉称,微软预见到了一个新的世界,它是智能云(Intelligent Cloud)与智能边缘(Intelligent Edge)的世界,它会改变所有的事。
这种改变会带来两个变化。
一是用户体验与交互上的变化,同样的体验会普及到各设备中,就像个人助理小娜,可以在所有设备上运行,无论是 PC、手机、汽车。
二是计算能力要到边缘去,因为物联网终端数据越来越多,会要求更多的计算能力下沉,这也意味着更加分布式的 AI(distributed AI)和分布式的计算(distributed computing)。
为此,微软在 Build 大会上发布了 Azure IoT Edge 服务,一个为物联网准备的云服务。它会有各传感器和小型计算设备追踪工业场景中的数据,然后由微软的云和 AI 工具分析。Azure IoT Edge 可以在本地计算设备上进行计算,节省时间。它同时也是跨平台的,支持 Linux 和 Windows。
除了计算走向边缘,微软的各项服务也要实现跨平台,在不同设备上出现。在会上,微软演示了 Cortana 在智能语音设备、汽车、PC 和手机上运行。小娜可以告诉你行程安排,而这些都可以在任何地方获取到。
云服务更新
在公布纳德拉公布微软的战略后,云服务部门负责人 Scott Guthrie 具体介绍了云上的新功能,雷锋网 (公众号:雷锋网) 对其概况如下。
Azure App
首先是 Android 与 iOS 平台的 Azure 移动应用,它可能做不了什么开发工作,但能帮助实时了解分析结果和故障报告,同时可以用它重启或布置虚拟机,这能让开发者随时知道自己的工作情况。
Visual Studio for Mac
在去年 11 月微软就曾承诺会有 MacOS 版的 Visual Studio,这次在会上也正式发布。
这一举动意味着微软对开发者的全方位支持,不论其码代码用的什么平台。
Azure Cosmos DB
微软还发布了新的云数据库服务 Cosmos DB,它的主要特点是能一键在多个国家快速布置数据库,这样各地的信息都会同步。它被称为是第一个全球分布的多模态数据库服务。
微软还发布了一款尚在预览阶段的数据库迁移服务,它可以将甲骨文和 SQL Server 的数据库迁移到 Azure SQL 数据库中,整个过程无需应用暂停,而且不需要重新配置。微软想让开发者在 Azure 用任何数据库。
另外,微软还推出了 Azure Service Fabric 容器服务,帮助将现有的. NET 应用容器化,从而布置在 Azure 上;Azure Functions 无服务器架构服务也有更新;还有新的存储服务加密,所有 Azure 文件都以 AES-256 加密。
为开发者赋能 AI
最后上台的是 AI 与研究部门的负责人沈向阳。
他表示,随着计算力和以深度学习为代表的算法的发展,以及海量数据的爆发,AI 有了长足的进步。在两年前,微软刚推出认知服务时,仅有 4 个 API,而现在已有 29 个之多,包括了视觉、语言、语音、搜索、知识等各大类。而微软希望更多开发者可以用到这些力量。
微软能提供的,也是遍布全球的云计算能力,以及来自微软研究院的突破性 AI 算法,这两者是创新服务的引擎。比如,在图像识别方面微软的 RESNET 曾使用了令人惊叹的 152 层神经网络;语音方面,在半年多前,微软识别识别也达到了人类的水平,错误率仅 5.9%。
而更进一步,微软希望能提供定制化的 AI 服务。沈向阳称,自从认知服务推出以来,开发者就想要定制化的服务。
传统服务只会给一个预先训练好的模型,而新服务可以让开发者用自己的数据(如图像)训练模型,它现在适用于计算机视觉服务,基于 Bing 的搜索引擎服务,以及决策服务(用于 A/B 测试,或个性化推荐等)。通过定制化的视觉服务,可以开发自己的图像识别系统,比如识别路标,食品等,这可以整合到一些消费类的应用中。
微软发布的 Azure Batch AI Training 就可以在 Azure 云平台上训练深度神经网络,现在这一服务还是预览版。现在关于这一服务的详情还很少,微软只是称,它会支持任何框架,包括 Google 的 TensorFlow,它自己的 Cognitive Toolkit 以及 Caffe。
沈向洋还提到,对话式的 AI 是语音领域最为让人兴奋的一点,因为它代表了下一代人机交互的变化,就像是从命令行到图形界面的演变,可以让交互变得更简单。
另外,他还展示了一个实时 PPT 翻译功能,它可以自动实时翻译 PPT 中的文本,同时在协作对话中以字幕的形式翻译语音内容。现在这一服务还处于预览阶段。它也展示了 AI 服务可以如何渗透到工作的方方面面。
最后,对于 AI 最重要的数据,微软还想为帮助开发者得到更好的数据,即在可信的平台上拥有和控制的数据。这些包括了微软自己的数据(Office 365 及 LinkedIn 数据),和自己的企业数据,两者结合可以打造出非常了不起的 AI 应用。