十大经典排序算法

转载自  十大经典排序算法

内容几乎完全来源于网络,整理人:hustcc

来源:https://github.com/hustcc/JS-Sorting-Algorithm

排序算法是《数据结构与算法》中最基本的算法之一。

排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:

 

关于时间复杂度:

  1. 平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。

  2. 线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序。

  3. O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序。

  4. 线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

     

关于稳定性:

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:

n:数据规模

k:“桶”的个数

In-place:占用常数内存,不占用额外内存

Out-place:占用额外内存

稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同

 

冒泡排序

冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

作为最简单的排序算法之一,冒泡排序给我的感觉就像 Abandon 在单词书里出现的感觉一样,每次都在第一页第一位,所以最熟悉。冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来说并没有什么太大作用。

1. 算法步骤

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。

  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

  3. 针对所有的元素重复以上的步骤,除了最后一个。

  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

2. 动图演示

 

3. 什么时候最快

当输入的数据已经是正序时(都已经是正序了,我还要你冒泡排序有何用啊)。

 

4. 什么时候最慢

当输入的数据是反序时(写一个 for 循环反序输出数据不就行了,干嘛要用你冒泡排序呢,我是闲的吗)。

 

5. Java 代码实现

public class BubbleSort implements IArraySort {@Overridepublic int[] sort(int[] sourceArray) throws Exception {// 对 arr 进行拷贝,不改变参数内容int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);for (int i = 1; i < arr.length; i++) {// 设定一个标记,若为true,则表示此次循环没有进行交换,也就是待排序列已经有序,排序已经完成。boolean flag = true;for (int j = 0; j < arr.length - i; j++) {if (arr[j] > arr[j + 1]) {int tmp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tmp;flag = false;}}if (flag) {break;}}return arr;}
}

 

选择排序

选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。

1. 算法步骤

  1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置

  2. 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

  3. 重复第二步,直到所有元素均排序完毕。

2. 动图演示

 

 

3. Java 代码实现

public class SelectionSort implements IArraySort {@Overridepublic int[] sort(int[] sourceArray) throws Exception {int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);// 总共要经过 N-1 轮比较for (int i = 0; i < arr.length - 1; i++) {int min = i;// 每轮需要比较的次数 N-ifor (int j = i + 1; j < arr.length; j++) {if (arr[j] < arr[min]) {// 记录目前能找到的最小值元素的下标min = j;}}// 将找到的最小值和i位置所在的值进行交换if (i != min) {int tmp = arr[i];arr[i] = arr[min];arr[min] = tmp;}}return arr;}
}

 

插入排序

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。

1. 算法步骤

  1. 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。

  2. 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

2. 动图演示

 

 

3. Java 代码实现

public class InsertSort implements IArraySort {@Overridepublic int[] sort(int[] sourceArray) throws Exception {// 对 arr 进行拷贝,不改变参数内容int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);// 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的for (int i = 1; i < arr.length; i++) {// 记录要插入的数据int tmp = arr[i];// 从已经排序的序列最右边的开始比较,找到比其小的数int j = i;while (j > 0 && tmp < arr[j - 1]) {arr[j] = arr[j - 1];j--;}// 存在比其小的数,插入if (j != i) {arr[j] = tmp;}}return arr;}
}

 

希尔排序

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;

  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;

希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

1. 算法步骤

  1. 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;

  2. 按增量序列个数 k,对序列进行 k 趟排序;

  3. 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

2. Java 代码实现

public class ShellSort implements IArraySort {@Overridepublic int[] sort(int[] sourceArray) throws Exception {// 对 arr 进行拷贝,不改变参数内容int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);int gap = 1;while (gap < arr.length) {gap = gap * 3 + 1;}while (gap > 0) {for (int i = gap; i < arr.length; i++) {int tmp = arr[i];int j = i - gap;while (j >= 0 && arr[j] > tmp) {arr[j + gap] = arr[j];j -= gap;}arr[j + gap] = tmp;}gap = (int) Math.floor(gap / 3);}return arr;}
}

 

归并排序

归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:

  • 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);

  • 自下而上的迭代;

在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:

However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.

然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。

说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。

1. 算法步骤

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

  4. 重复步骤 3 直到某一指针达到序列尾;

  5. 将另一序列剩下的所有元素直接复制到合并序列尾。

2. 动图演示

 

 

3. Java 代码实现

public class MergeSort implements IArraySort {@Overridepublic int[] sort(int[] sourceArray) throws Exception {// 对 arr 进行拷贝,不改变参数内容int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);if (arr.length < 2) {return arr;}int middle = (int) Math.floor(arr.length / 2);int[] left = Arrays.copyOfRange(arr, 0, middle);int[] right = Arrays.copyOfRange(arr, middle, arr.length);return merge(sort(left), sort(right));}protected int[] merge(int[] left, int[] right) {int[] result = new int[left.length + right.length];int i = 0;while (left.length > 0 && right.length > 0) {if (left[0] <= right[0]) {result[i++] = left[0];left = Arrays.copyOfRange(left, 1, left.length);} else {result[i++] = right[0];right = Arrays.copyOfRange(right, 1, right.length);}}while (left.length > 0) {result[i++] = left[0];left = Arrays.copyOfRange(left, 1, left.length);}while (right.length > 0) {result[i++] = right[0];right = Arrays.copyOfRange(right, 1, right.length);}return result;}}

 

快速排序

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

快速排序的最坏运行情况是 O(n²),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

1. 算法步骤

  1. 从数列中挑出一个元素,称为 “基准”(pivot);

  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

2. 动图演示

 

3. Java 代码实现

public class QuickSort implements IArraySort {@Overridepublic int[] sort(int[] sourceArray) throws Exception {// 对 arr 进行拷贝,不改变参数内容int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);return quickSort(arr, 0, arr.length - 1);}private int[] quickSort(int[] arr, int left, int right) {if (left < right) {int partitionIndex = partition(arr, left, right);quickSort(arr, left, partitionIndex - 1);quickSort(arr, partitionIndex + 1, right);}return arr;}private int partition(int[] arr, int left, int right) {// 设定基准值(pivot)int pivot = left;int index = pivot + 1;for (int i = index; i <= right; i++) {if (arr[i] < arr[pivot]) {swap(arr, i, index);index++;}}swap(arr, pivot, index - 1);return index - 1;}private void swap(int[] arr, int i, int j) {int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}}

 

堆排序

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;

  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

堆排序的平均时间复杂度为 Ο(nlogn)。

1. 算法步骤

  1. 创建一个堆 H[0……n-1];

  2. 把堆首(最大值)和堆尾互换;

  3. 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;

  4. 重复步骤 2,直到堆的尺寸为 1。

2. 动图演示

 

 

3. Java 代码实现

public class HeapSort implements IArraySort {@Overridepublic int[] sort(int[] sourceArray) throws Exception {// 对 arr 进行拷贝,不改变参数内容int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);int len = arr.length;buildMaxHeap(arr, len);for (int i = len - 1; i > 0; i--) {swap(arr, 0, i);len--;heapify(arr, 0, len);}return arr;}private void buildMaxHeap(int[] arr, int len) {for (int i = (int) Math.floor(len / 2); i >= 0; i--) {heapify(arr, i, len);}}private void heapify(int[] arr, int i, int len) {int left = 2 * i + 1;int right = 2 * i + 2;int largest = i;if (left < len && arr[left] > arr[largest]) {largest = left;}if (right < len && arr[right] > arr[largest]) {largest = right;}if (largest != i) {swap(arr, i, largest);heapify(arr, largest, len);}}private void swap(int[] arr, int i, int j) {int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}}

 

计数排序

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

1. 动图演示

2. Java 代码实现

public class CountingSort implements IArraySort {@Overridepublic int[] sort(int[] sourceArray) throws Exception {// 对 arr 进行拷贝,不改变参数内容int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);int maxValue = getMaxValue(arr);return countingSort(arr, maxValue);}private int[] countingSort(int[] arr, int maxValue) {int bucketLen = maxValue + 1;int[] bucket = new int[bucketLen];for (int value : arr) {bucket[value]++;}int sortedIndex = 0;for (int j = 0; j < bucketLen; j++) {while (bucket[j] > 0) {arr[sortedIndex++] = j;bucket[j]--;}}return arr;}private int getMaxValue(int[] arr) {int maxValue = arr[0];for (int value : arr) {if (maxValue < value) {maxValue = value;}}return maxValue;}}

 

桶排序

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。为了使桶排序更加高效,我们需要做到这两点:

  1. 在额外空间充足的情况下,尽量增大桶的数量

  2. 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中

同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。

1. 什么时候最快

当输入的数据可以均匀的分配到每一个桶中。

2. 什么时候最慢

当输入的数据被分配到了同一个桶中。

3. Java 代码实现

public class BucketSort implements IArraySort {private static final InsertSort insertSort = new InsertSort();@Overridepublic int[] sort(int[] sourceArray) throws Exception {// 对 arr 进行拷贝,不改变参数内容int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);return bucketSort(arr, 5);}private int[] bucketSort(int[] arr, int bucketSize) throws Exception {if (arr.length == 0) {return arr;}int minValue = arr[0];int maxValue = arr[0];for (int value : arr) {if (value < minValue) {minValue = value;} else if (value > maxValue) {maxValue = value;}}int bucketCount = (int) Math.floor((maxValue - minValue) / bucketSize) + 1;int[][] buckets = new int[bucketCount][0];// 利用映射函数将数据分配到各个桶中for (int i = 0; i < arr.length; i++) {int index = (int) Math.floor((arr[i] - minValue) / bucketSize);buckets[index] = arrAppend(buckets[index], arr[i]);}int arrIndex = 0;for (int[] bucket : buckets) {if (bucket.length <= 0) {continue;}// 对每个桶进行排序,这里使用了插入排序bucket = insertSort.sort(bucket);for (int value : bucket) {arr[arrIndex++] = value;}}return arr;}/*** 自动扩容,并保存数据** @param arr* @param value*/private int[] arrAppend(int[] arr, int value) {arr = Arrays.copyOf(arr, arr.length + 1);arr[arr.length - 1] = value;return arr;}}

 

基数排序

基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

1. 基数排序 vs 计数排序 vs 桶排序

基数排序有两种方法:

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

  • 基数排序:根据键值的每位数字来分配桶;

  • 计数排序:每个桶只存储单一键值;

  • 桶排序:每个桶存储一定范围的数值;

2. LSD 基数排序动图演示

3. Java 代码实现

/*** 基数排序* 考虑负数的情况还可以参考: https://code.i-harness.com/zh-CN/q/e98fa9*/
public class RadixSort implements IArraySort {@Overridepublic int[] sort(int[] sourceArray) throws Exception {// 对 arr 进行拷贝,不改变参数内容int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);int maxDigit = getMaxDigit(arr);return radixSort(arr, maxDigit);}/*** 获取最高位数*/private int getMaxDigit(int[] arr) {int maxValue = getMaxValue(arr);return getNumLenght(maxValue);}private int getMaxValue(int[] arr) {int maxValue = arr[0];for (int value : arr) {if (maxValue < value) {maxValue = value;}}return maxValue;}protected int getNumLenght(long num) {if (num == 0) {return 1;}int lenght = 0;for (long temp = num; temp != 0; temp /= 10) {lenght++;}return lenght;}private int[] radixSort(int[] arr, int maxDigit) {int mod = 10;int dev = 1;for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {// 考虑负数的情况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10)int[][] counter = new int[mod * 2][0];for (int j = 0; j < arr.length; j++) {int bucket = ((arr[j] % mod) / dev) + mod;counter[bucket] = arrayAppend(counter[bucket], arr[j]);}int pos = 0;for (int[] bucket : counter) {for (int value : bucket) {arr[pos++] = value;}}}return arr;}/*** 自动扩容,并保存数据** @param arr* @param value*/private int[] arrayAppend(int[] arr, int value) {arr = Arrays.copyOf(arr, arr.length + 1);arr[arr.length - 1] = value;return arr;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/323274.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

将网页打包app

准备&#xff1a;Hbuilder X 一个网址 打开软件&#xff0c;选择新建 新建项目 再里面写上名称和地址 这里给个免费看电影的网站 http://www.k2938.com/ 在manifest.json配置相关文件&#xff0c;如图标 启动图也可以设置 最后发行 取消ios&#xff0c;使用DCloud证书…

DotNetCore跨平台~配置文件与配置代码如何共存

古人云《一山不容二虎》&#xff0c;而进行dotnet core时代之后&#xff0c;我们可以看到这样的一些官方的DEMO&#xff0c;它将数据连接串和其它配置项都直接硬编码在代码里&#xff0c;即在startup中进行定义&#xff0c;试问你在生产环境如何兼容&#xff01;当然&#xff0…

高效实用的.NET开源项目

似乎...很久很久没有写博客了&#xff0c;一直都想写两篇&#xff0c;但是却没有时间写。感觉最近有很多事情需要处理&#xff0c;一直都是疲于奔命&#xff0c;一直到最近才变得有些时间学习和充电。最近没有事情都会看一些博客和开源项目&#xff0c;发现介绍开源项目的文章似…

EFCore废弃了TransactionScope取而代之的Context.Database.BeginTransaction

TransactionScope是.net平台基于的分布式事务组件&#xff0c;它默认为本地事务&#xff0c;同时当系统有需要时可以自动提升为分布式事务&#xff0c;而对系统的前提是要开启MSDTC服务&#xff0c;必要时需要在数据库服务器与应用服务器之间添加hosts的映射&#xff0c;这些在…

从 Spring Cloud 看一个微服务框架的「五脏六腑」

转载自 从 Spring Cloud 看一个微服务框架的「五脏六腑」 Spring Cloud 是一个基于 Spring Boot 实现的微服务框架&#xff0c;它包含了实现微服务架构所需的各种组件。 注&#xff1a;Spring Boot 简单理解就是简化 Spring 项目的搭建、配置、组合的框架。因为与构建微服务本…

eclipse导入github项目

首先登录github&#xff0c;找到项目&#xff0c;复制项目地址 复制地址在上面 即可导入成功 然后现在就可以玩游戏了 空手套白狼&#xff0c;github真的是白嫖&#xff0c;程序员必备之品。

From Agile To DevOps - 微软开发部门 DevOps 经验谈

在 2013 年 11 月 13 日&#xff0c;我们正式发行了 Visual Studio 2013&#xff0c;以及全新的 Visual Studio Online 服务。但在服务发表之后&#xff0c;Visual Studio Online 却发⽣了异常&#xff0c;造成七个小时服务中断&#xff0c;这是因为在服务上线时&#xff0c;我…

selenium以及chromdrive安装

selenium的安装比较简单&#xff0c;直接pip install selenium就可以了 看有些网上写的chromedrive安装好麻烦啊&#xff0c;我win10自己试了下&#xff0c;感觉并不需要配置那么多环境变量。 直接性 http://npm.taobao.org/mirrors/chromedriver/ 找到相应的chrome版本即可 至…

通过C#/.NET API使用CNTK

CNTK v2.2.0提供C#API来建立、训练和评估CNTK模型。 本节概要介绍了CNTK C#API。 在CNTK github respository中可以找到C#训练示例。 使用C&#xff03;/ .NET管理API构建深层神经网络 CNTK C#API 通过CNTKLib命名空间提供基本操作。 CNTK操作需要一个或两个具有必要参数的输入…

Kafka Controller Redesign 方案

转载自 Kafka Controller Redesign 方案 Kafka Controller 是 Kafka 的核心组件&#xff0c;在前面的文章中&#xff0c;已经详细讲述过 Controller 部分的内容。在过去的几年根据大家在生产环境中应用的反馈&#xff0c;Controller 也积累了一些比较大的问题&#xff0c;而针…

做个人网站的原因

昨天b站上看视频&#xff0c;浏览评论时&#xff0c;看到一个网址 https://xiaoyou66.com/ 博主写了大概一百篇的文章&#xff0c;我进来的时候真的是被这js特效给惊到了&#xff0c;个人网站也能变得这么二次元嘛&#xff0c;讲实话&#xff0c;光是看这酷炫的页面都比较有欲望…

一文理解Netty模型架构

转载自 一文理解Netty模型架构 本文基于Netty4.1展开介绍相关理论模型&#xff0c;使用场景&#xff0c;基本组件、整体架构&#xff0c;知其然且知其所以然&#xff0c;希望给读者提供学习实践参考。 1 Netty简介 Netty是 一个异步事件驱动的网络应用程序框架&#xff0c;用…

尝试涉猎更多领域

昨天b站上看视频&#xff0c;浏览评论时&#xff0c;看到一个网址 https://xiaoyou66.com/ 博主写了大概一百篇的文章&#xff0c;我进来的时候真的是被这js特效给惊到了&#xff0c;个人网站也能变得这么二次元嘛&#xff0c;讲实话&#xff0c;光是看这酷炫的页面都比较有欲望…

聊聊分布式事务,再说说解决方案

前言 最近很久没有写博客了&#xff0c;一方面是因为公司事情最近比较忙&#xff0c;另外一方面是因为在进行 CAP 的下一阶段的开发工作&#xff0c;不过目前已经告一段落了。 接下来还是开始我们今天的话题&#xff0c;说说分布式事务&#xff0c;或者说是我眼中的分布式事务&…

Redis+Tomcat+Nginx集群实现Session共享,Tomcat Session共享

转载自 RedisTomcatNginx集群实现Session共享&#xff0c;Tomcat Session共享 一、Session共享使用tomcat-cluster-redis-session-manager插件实现 插件地址见&#xff1a; https://github.com/ran-jit/tomcat-cluster-redis-session-manager 该插件支持Tomcat7、Tomcat8、To…

个人博客搭建

先下载node.js 用npm或cnpm安装hexo cnpm install hexo 再创建一个文件夹&#xff0c;在文件夹目录下打开cmd 输入 hexo init 输入 hexo s 这就在本地算是完成了一个博客的创建 新建博客hexo n ‘Hello world’ hexo clean hexo s 就可以再次启动&#xff0c;这样 记得先 cn…

C#使用Xamarin开发可移植移动应用进阶篇(10.综合演练,来一份增删改查CRUD)

说点什么.. 呃 也有半个月没更新了. 本来这篇的Demo早就写完了,文章也构思好了.迟迟没发布..是因为实在太忙.. 项目要上线..各种 你们懂的.. 正赶上自己十一人生大事..结婚..所以..忙的那叫一个脚不沾地啊. 今天的学习内容? 使用我们前面所学的技术,写一个增删改查. 效果如下…

hexo部署在码云出现样式问题

然而本地服务器并没有任何问题 重建一个 重新建一个仓库 还是这种情况&#xff0c;回头再找原因&#xff0c;两次都是这种情况&#xff0c;就是配置错了 借用 https://blog.csdn.net/xiangwanpeng/article/details/53155642 https://blog.csdn.net/qq_29347295/article/deta…

当你输入一个网址的时候,实际会发生什么?

转载自 当你输入一个网址的时候&#xff0c;实际会发生什么? 译文:http://igoro.com/archive/what-really-happens-when-you-navigate-to-a-url/ 作为一个软件开发者&#xff0c;你一定会对网络应用如何工作有一个完整的层次化的认知&#xff0c;同样这里也包括这些应用所…

SIMD via C#

简介 TL;DR 我们为C#&#xff08;准确地说是.NET Core&#xff09;引入了一套全新的机制&#xff0c;使得C# 以后可以像C/C 一样直接使用intrinsic functions 来直接操作Intel CPU 的大多数SIMD 指令了&#xff08;从SSE 到AVX2&#xff09;。 &#xff08;注意是以后&#xff…