Sentinel(五)之流量控制

转载自  流量控制

概述

流量控制(flow control),其原理是监控应用流量的 QPS 或并发线程数等指标,当达到指定的阈值时对流量进行控制,以避免被瞬时的流量高峰冲垮,从而保障应用的高可用性。

FlowSlot 会根据预设的规则,结合前面 NodeSelectorSlotClusterBuilderSlotStatisticSlot 统计出来的实时信息进行流量控制。

限流的直接表现是在执行 Entry nodeA = SphU.entry(resourceName) 的时候抛出 FlowException 异常。FlowException 是 BlockException 的子类,您可以捕捉 BlockException 来自定义被限流之后的处理逻辑。

同一个资源可以创建多条限流规则。FlowSlot 会对该资源的所有限流规则依次遍历,直到有规则触发限流或者所有规则遍历完毕。

一条限流规则主要由下面几个因素组成,我们可以组合这些元素来实现不同的限流效果:

  • resource:资源名,即限流规则的作用对象
  • count: 限流阈值
  • grade: 限流阈值类型(QPS 或并发线程数)
  • limitApp: 流控针对的调用来源,若为 default 则不区分调用来源
  • strategy: 调用关系限流策略
  • controlBehavior: 流量控制效果(直接拒绝、Warm Up、匀速排队)

基于QPS/并发数的流量控制

流量控制主要有两种统计类型,一种是统计并发线程数,另外一种则是统计 QPS。类型由 FlowRule 的 grade 字段来定义。其中,0 代表根据并发数量来限流,1 代表根据 QPS 来进行流量控制。其中线程数、QPS 值,都是由 StatisticSlot 实时统计获取的。

我们可以通过下面的命令查看实时统计信息:

curl http://localhost:8719/cnode?id=resourceName

输出内容格式如下:

idx id     thread  pass  blocked   success  total Rt   1m-pass   1m-block   1m-all   exception
2   abc647    0     46      0         46      46   1     2763       0         2763     0

其中:

  • thread: 代表当前处理该资源的并发数;
  • pass: 代表一秒内到来到的请求;
  • blocked: 代表一秒内被流量控制的请求数量;
  • success: 代表一秒内成功处理完的请求;
  • total: 代表到一秒内到来的请求以及被阻止的请求总和;
  • RT: 代表一秒内该资源的平均响应时间;
  • 1m-pass: 则是一分钟内到来的请求;
  • 1m-block: 则是一分钟内被阻止的请求;
  • 1m-all: 则是一分钟内到来的请求和被阻止的请求的总和;
  • exception: 则是一秒内业务本身异常的总和。

2.1 并发线程数控制

并发数控制用于保护业务线程池不被慢调用耗尽。例如,当应用所依赖的下游应用由于某种原因导致服务不稳定、响应延迟增加,对于调用者来说,意味着吞吐量下降和更多的线程数占用,极端情况下甚至导致线程池耗尽。为应对太多线程占用的情况,业内有使用隔离的方案,比如通过不同业务逻辑使用不同线程池来隔离业务自身之间的资源争抢(线程池隔离)。这种隔离方案虽然隔离性比较好,但是代价就是线程数目太多,线程上下文切换的 overhead 比较大,特别是对低延时的调用有比较大的影响。Sentinel 并发控制不负责创建和管理线程池,而是简单统计当前请求上下文的线程数目(正在执行的调用数目),如果超出阈值,新的请求会被立即拒绝,效果类似于信号量隔离。并发数控制通常在调用端进行配置。

例子参见:ThreadDemo

2.2 QPS流量控制

当 QPS 超过某个阈值的时候,则采取措施进行流量控制。流量控制的效果包括以下几种:直接拒绝Warm Up匀速排队。对应 FlowRule 中的 controlBehavior 字段。

注意:若使用除了直接拒绝之外的流量控制效果,则调用关系限流策略(strategy)会被忽略。

直接拒绝

直接拒绝RuleConstant.CONTROL_BEHAVIOR_DEFAULT)方式是默认的流量控制方式,当QPS超过任意规则的阈值后,新的请求就会被立即拒绝,拒绝方式为抛出FlowException。这种方式适用于对系统处理能力确切已知的情况下,比如通过压测确定了系统的准确水位时。具体的例子参见 FlowQpsDemo。

Warm Up

Warm Up(RuleConstant.CONTROL_BEHAVIOR_WARM_UP)方式,即预热/冷启动方式。当系统长期处于低水位的情况下,当流量突然增加时,直接把系统拉升到高水位可能瞬间把系统压垮。通过"冷启动",让通过的流量缓慢增加,在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。详细文档可以参考 流量控制 - Warm Up 文档,具体的例子可以参见 WarmUpFlowDemo。

通常冷启动的过程系统允许通过的 QPS 曲线如下图所示:

image

匀速排队

匀速排队(RuleConstant.CONTROL_BEHAVIOR_RATE_LIMITER)方式会严格控制请求通过的间隔时间,也即是让请求以均匀的速度通过,对应的是漏桶算法。详细文档可以参考 流量控制 - 匀速器模式,具体的例子可以参见 PaceFlowDemo。

该方式的作用如下图所示:

image

这种方式主要用于处理间隔性突发的流量,例如消息队列。想象一下这样的场景,在某一秒有大量的请求到来,而接下来的几秒则处于空闲状态,我们希望系统能够在接下来的空闲期间逐渐处理这些请求,而不是在第一秒直接拒绝多余的请求。

注意:匀速排队模式暂时不支持 QPS > 1000 的场景。

基于调用关系的流量控制

调用关系包括调用方、被调用方;一个方法又可能会调用其它方法,形成一个调用链路的层次关系。Sentinel 通过 NodeSelectorSlot 建立不同资源间的调用的关系,并且通过 ClusterBuilderSlot 记录每个资源的实时统计信息。

有了调用链路的统计信息,我们可以衍生出多种流量控制手段。

3.1 根据调用方限流

ContextUtil.enter(resourceName, origin) 方法中的 origin 参数标明了调用方身份。这些信息会在 ClusterBuilderSlot 中被统计。可通过以下命令来展示不同的调用方对同一个资源的调用数据:

curl http://localhost:8719/origin?id=nodeA

调用数据示例:

id: nodeA
idx origin  threadNum passedQps blockedQps totalQps aRt   1m-passed 1m-blocked 1m-total 
1   caller1 0         0         0          0        0     0         0          0
2   caller2 0         0         0          0        0     0         0          0

上面这个命令展示了资源名为 nodeA 的资源被两个不同的调用方调用的统计。

流控规则中的 limitApp 字段用于根据调用来源进行流量控制。该字段的值有以下三种选项,分别对应不同的场景:

  • default:表示不区分调用者,来自任何调用者的请求都将进行限流统计。如果这个资源名的调用总和超过了这条规则定义的阈值,则触发限流。
  • {some_origin_name}:表示针对特定的调用者,只有来自这个调用者的请求才会进行流量控制。例如 NodeA 配置了一条针对调用者caller1的规则,那么当且仅当来自 caller1 对 NodeA 的请求才会触发流量控制。
  • other:表示针对除 {some_origin_name} 以外的其余调用方的流量进行流量控制。例如,资源NodeA配置了一条针对调用者 caller1 的限流规则,同时又配置了一条调用者为 other 的规则,那么任意来自非 caller1 对 NodeA 的调用,都不能超过 other 这条规则定义的阈值。

同一个资源名可以配置多条规则,规则的生效顺序为:{some_origin_name} > other > default

3.2 根据调用链路入口限流:链路限流

NodeSelectorSlot 中记录了资源之间的调用链路,这些资源通过调用关系,相互之间构成一棵调用树。这棵树的根节点是一个名字为 machine-root 的虚拟节点,调用链的入口都是这个虚节点的子节点。

一棵典型的调用树如下图所示:

     	          machine-root/       \/         \Entrance1     Entrance2/             \/               \DefaultNode(nodeA)   DefaultNode(nodeA)

上图中来自入口 Entrance1 和 Entrance2 的请求都调用到了资源 NodeA,Sentinel 允许只根据某个入口的统计信息对资源限流。比如我们可以设置 strategy 为 RuleConstant.STRATEGY_CHAIN,同时设置 refResource 为 Entrance1 来表示只有从入口 Entrance1 的调用才会记录到 NodeA 的限流统计当中,而不关心经 Entrance2 到来的调用。

调用链的入口(上下文)是通过 API 方法 ContextUtil.enter(contextName) 定义的,其中 contextName 即对应调用链路入口名称。详情可以参考 ContextUtil 文档。

3.3 具有关系的资源流量控制:关联流量控制

当两个资源之间具有资源争抢或者依赖关系的时候,这两个资源便具有了关联。比如对数据库同一个字段的读操作和写操作存在争抢,读的速度过高会影响写得速度,写的速度过高会影响读的速度。如果放任读写操作争抢资源,则争抢本身带来的开销会降低整体的吞吐量。可使用关联限流来避免具有关联关系的资源之间过度的争抢,举例来说,read_db 和 write_db 这两个资源分别代表数据库读写,我们可以给 read_db 设置限流规则来达到写优先的目的:设置 strategy 为 RuleConstant.STRATEGY_RELATE 同时设置 refResource 为 write_db。这样当写库操作过于频繁时,读数据的请求会被限流。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/322292.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ASP.NET Core中使用IOC三部曲(三.采用替换后的Autofac来实现AOP拦截)

上一篇ASP.NET Core中使用IOC三部曲(二.采用Autofac来替换IOC容器,并实现属性注入)我们讲了如何将默认的容器替换为Autofac,并使用属性注入.那么这一篇我们就来讲讲如何利用Autofac实现我们的AOP(面向切面编程) .1.引用正确的库来实现AOP既然是跨平台,那么在asp.net core因为采…

Sentinel(六)之集群流控

转载自 集群流控 介绍 为什么要使用集群流控呢?假设我们希望给某个用户限制调用某个 API 的总 QPS 为 50,但机器数可能很多(比如有 100 台)。这时候我们很自然地就想到,找一个 server 来专门来统计总的调用量&#…

Mybatis-Plus基本

Data AllArgsConstructor//全参构造 NoArgsConstructor//无参构造 Accessors(chain true)//链表模式 TableName("User")//映射数据表名 public class User implements Serializable {//序列化传输保证数据完整TableId(type IdType.UUID)//设定主键自增private Inte…

Sentinel(七)之网关限流

转载自 网关限流 Sentinel 支持对 Spring Cloud Gateway、Zuul 等主流的 API Gateway 进行限流。 Sentinel 1.6.0 引入了 Sentinel API Gateway Adapter Common 模块,此模块中包含网关限流的规则和自定义 API 的实体和管理逻辑: GatewayFlowRule&…

C# 7编程模式与实践

C# 7是一个重大更新,其中提供了很多有意思的新功能。虽然已有大量的文章介绍这些功能可以做什么,但是鲜有文章介绍应如何使用这些功能。本文将过一遍《.NET设计规范:.NET约定惯用法与模式》(译者注:英文书名为“Framew…

Sentinel(八)之熔断降级

转载自 熔断降级 概述 除了流量控制以外,对调用链路中不稳定的资源进行熔断降级也是保障高可用的重要措施之一。一个服务常常会调用别的模块,可能是另外的一个远程服务、数据库,或者第三方 API 等。例如,支付的时候&#xff0c…

.net的retrofit--WebApiClient底层篇

前言本篇文章的内容是WebApiClient底层说明,也是WebApiClient系列接近尾声的一篇文章,如果你没有阅读过之前的的相关文章,可能会觉得本文章的内容断层库简介WebApiClient是开源在github上的一个httpClient客户端库,内部基于HttpCl…

Sentinel(九)之热点参数限流

转载自 热点参数限流 Overview 何为热点?热点即经常访问的数据。很多时候我们希望统计某个热点数据中访问频次最高的 Top K 数据,并对其访问进行限制。比如: 商品 ID 为参数,统计一段时间内最常购买的商品 ID 并进行限制用户 …

【直播 】ASP.NET Core解密底层设计逻辑

.NET社区新闻,深度好文,欢迎访问公众号文章汇总 http://www.csharpkit.com

Sentinel(十)之系统自适应限流

转载自 系统自适应限流 Sentinel 系统自适应限流从整体维度对应用入口流量进行控制,结合应用的 Load、CPU 使用率、总体平均 RT、入口 QPS 和并发线程数等几个维度的监控指标,通过自适应的流控策略,让系统的入口流量和系统的负载达到一个平…

如何ASP.NET Core Razor中处理Ajax请求

在ASP.NET Core Razor(以下简称Razor)刚出来的时候,看了一下官方的文档,一直没怎么用过。今天闲来无事,准备用Rozor做个项目熟练下,结果写第一个页面就卡住了。。折腾半天才搞好,下面给大家分享下解决方案。先来给大家简单介绍下RazorRazor Pages是ASP.NET Core的一项新功能&am…

小白带你入坑xamarin系列之环境搭建和准备

序言:移动端的跨平台百花齐放,各种技术方案和方法都是层出不穷。目前xamarin确实是一套成熟可靠,完全值得信赖的开发框架。尤其是对传统做WPF ASP.NET的开发团队来说要节约成本开始移动端开发。这个是很好的一个选项。开始之前回答2个问题。1…

Dora.Interception,为.NET Core度身打造的AOP框架:全新的版本

Dora.Interception 1.0(可以访问GitHub地址:https://github.com/jiangjinnan/Dora)推出有一段时间了,最近花了点时间将它升级到2.0,主要有如下的改进:提供了原生的动态代理生成底层框架Dora.DynamicProxy&a…

欢乐纪中某A组赛【2019.7.8】

前言 你以为我是jzojjzojjzoj,其实我是GMojGMojGMoj哒 成绩 JJJ表示初中,HHH表示高中后面加的是几年级 上至222分XJQXJQXJQ,下至200ZZY200ZZY200ZZY都有我们SSLSSLSSL的人(滑稽) |RankRankRank|PersonPersonPerson|ScoreScoreScore|AAA|BBB|CCC| RankR…

Sentinel(十四)之控制台

转载自 Sentinel 控制台 1. 概述 Sentinel 提供一个轻量级的开源控制台,它提供机器发现以及健康情况管理、监控(单机和集群),规则管理和推送的功能。这里,我们将会详细讲述如何通过简单的步骤就可以使用这些功能。 …

C# 这些年来受欢迎的特性

原文地址:http://www.dotnetcurry.com/csharp/1411/csharp-favorite-features在写这篇文章的时候,C# 已经有了 17 年的历史了,可以肯定地说它并没有去任何地方。C# 语言团队不断致力于开发新特性,改善开发人员的体验。在这篇文章中&#xff0…

Sentinel(十三)之动态规则扩展

转载自 动态规则扩展 规则 Sentinel 的理念是开发者只需要关注资源的定义,当资源定义成功后可以动态增加各种流控降级规则。Sentinel 提供两种方式修改规则: 通过 API 直接修改 (loadRules)通过 DataSource 适配不同数据源修改 手动通过 API 修改比较…

AspectCore动态代理中的拦截器详解(一)

前言在上一篇文章使用AspectCore动态代理中,简单说明了AspectCore.DynamicProxy的使用方式,由于介绍的比较浅显,也有不少同学留言询问拦截器的配置,那么在这篇文章中,我们来详细看一下AspectCore中的拦截器使用。两种配…

Actor-ES框架:Ray

并发1. 并发和并行并发:两个或多个任务在同一时间段内运行。关注点在任务分割。并行:两个或多个任务在同一时刻同时运行。关注点在同时执行。本文大多数情况下不会严格区分这两个概念,默认并发就是指并行机制下的并发。2. 好处随着多核处理器…

Sentinel(十五)之在生产环境中使用 Sentinel

转载自 在生产环境中使用 Sentinel 引言 Sentinel 目前已可用于生产环境,除了阿里巴巴以外,也有很多企业在生产环境中广泛使用 Sentinel。 生产环境的 Sentinel Dashboard 需要具备下面几个特性: 规则管理及推送,集中管理和推送规则。se…