面部表情识别4:C++实现表情识别(含源码,可实时检测)

面部表情识别4:C++实现表情识别(含源码,可实时检测)

目录

面部表情识别4:C++实现表情识别(含源码,可实时检测)

 1.面部表情识别方法

2.人脸检测方法

3.面部表情识别模型(Python)

(1) 面部表情识别模型的训练

(2) 将Pytorch模型转换ONNX模型

(3) 将ONNX模型转换为TNN模型

4.面部表情识别模型C/C++部署

(1)项目结构

 (2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

(3)部署TNN模型

(4)CMake配置

(5)main源码

(6)源码编译和运行

(7)Demo测试效果 

5.项目源码下载


这是项目《面部表情识别》系列之《C++实现表情识别(含源码,可实时检测)》,主要分享将Python训练后的面部表情识别模型(mobilenet_v2)部署到C/C++平台。我们将开发一个简易的、可实时运行的面部表情识别的C/C++ Demo。准确率还挺高的,采用轻量级mobilenet_v2模型的面部表情识别准确率也可以高达94.72%左右,基本满足业务性能需求。C/C ++版本表情识别模型推理支持CPU和GPU加速,开启GPU(OpenCL)加速,可以达到实时的检测识别效果,基本满足业务的性能需求。

先展示一下,C/C++版本的面部表情识别Demo效果(不同表情用不同的颜色框标注了)

尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/129467023


 更多项目《面部表情识别》系列文章请参考:

  1. 面部表情识别1:表情识别数据集(含下载链接)
  2. 面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)
  3. 面部表情识别3:Android实现表情识别(含源码,可实时检测)
  4. 面部表情识别4:C++实现表情识别(含源码,可实时检测)


 1.面部表情识别方法

面部表情识别方法有多种实现方案,这里采用最常规的方法:基于人脸检测+面部表情分类识别方法,即先采用通用的人脸检测模型,进行人脸检测,然后裁剪人脸区域,再训练一个面部表情分类器,完成对面部表情识别;

这样做的好处,是可以利用现有的人脸检测模型,而无需重新训练人脸检测模型,可减少人工标注成本低;而人脸数据相对而言比较容易采集,分类模型可针对性进行优化。


2.人脸检测方法

本项目人脸检测训练代码请参考:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB 

这是一个基于SSD改进且轻量化后人脸检测模型,很slim,整个模型仅仅1.7M左右,在普通Android手机都可以实时检测。人脸检测方法在网上有一大堆现成的方法可以使用,完全可以不局限我这个方法。

​​​

关于人脸检测的方法,可以参考我的另一篇博客:

行人检测和人脸检测和人脸关键点检测(C++/Android源码)


3.面部表情识别模型(Python)

(1) 面部表情识别模型的训练

本篇博文不含python版本的面部表情模型以及相关训练代码,关于面部表情识别模型的训练方法,请参考本人另一篇博文《面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)》:面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)

(2) 将Pytorch模型转换ONNX模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行C/C++端上部署。部署流程可分为四步:训练模型->将模型转换ONNX模型->将ONNX模型转换为TNN模型->C/C++部署TNN模型。

训练好Pytorch模型后,我们需要先将模型转换为ONNX模型,以便后续模型部署。

  • 原始项目提供转换脚本,你只需要修改model_file为你模型路径即可
  •  convert_torch_to_onnx.py实现将Pytorch模型转换ONNX模型的脚本
python libs/convert/convert_torch_to_onnx.py
"""
This code is used to convert the pytorch model into an onnx format model.
"""
import sys
import ossys.path.insert(0, os.getcwd())
import torch.onnx
import onnx
from classifier.models.build_models import get_models
from basetrainer.utils import torch_toolsdef build_net(model_file, net_type, input_size, num_classes, width_mult=1.0):""":param model_file: 模型文件:param net_type: 模型名称:param input_size: 模型输入大小:param num_classes: 类别数:param width_mult::return:"""model = get_models(net_type, input_size, num_classes, width_mult=width_mult, is_train=False, pretrained=False)state_dict = torch_tools.load_state_dict(model_file)model.load_state_dict(state_dict)return modeldef convert2onnx(model_file, net_type, input_size, num_classes, width_mult=1.0, device="cpu", onnx_type="default"):model = build_net(model_file, net_type, input_size, num_classes, width_mult=width_mult)model = model.to(device)model.eval()model_name = os.path.basename(model_file)[:-len(".pth")] + ".onnx"onnx_path = os.path.join(os.path.dirname(model_file), model_name)# dummy_input = torch.randn(1, 3, 240, 320).to("cuda")dummy_input = torch.randn(1, 3, input_size[1], input_size[0]).to(device)# torch.onnx.export(model, dummy_input, onnx_path, verbose=False,#                   input_names=['input'],output_names=['scores', 'boxes'])do_constant_folding = Trueif onnx_type == "default":torch.onnx.export(model, dummy_input, onnx_path, verbose=False, export_params=True,do_constant_folding=do_constant_folding,input_names=['input'],output_names=['output'])elif onnx_type == "det":torch.onnx.export(model,dummy_input,onnx_path,do_constant_folding=do_constant_folding,export_params=True,verbose=False,input_names=['input'],output_names=['scores', 'boxes', 'ldmks'])elif onnx_type == "kp":torch.onnx.export(model,dummy_input,onnx_path,do_constant_folding=do_constant_folding,export_params=True,verbose=False,input_names=['input'],output_names=['output'])onnx_model = onnx.load(onnx_path)onnx.checker.check_model(onnx_model)print(onnx_path)if __name__ == "__main__":net_type = "mobilenet_v2"width_mult = 1.0input_size = [128, 128]num_classes = 2model_file = "work_space/mobilenet_v2_1.0_CrossEntropyLoss/model/best_model_022_98.1848.pth"convert2onnx(model_file, net_type, input_size, num_classes, width_mult=width_mult)

(3) 将ONNX模型转换为TNN模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行C/C++端上部署

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

​​​

4.面部表情识别模型C/C++部署

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置好开发环境。

(1)项目结构

 (2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置和编译

  • 安装OpenCV:图像处理

图像处理(如读取图片,图像裁剪等)都需要使用OpenCV库进行处理

安装教程:Ubuntu18.04安装opencv和opencv_contrib_AI吃大瓜的博客-CSDN博客_opencv opencv_contrib ubuntu

OpenCV库使用opencv-4.3.0版本,opencv_contrib库暂时未使用,可不安装

  • 安装OpenCL:模型加速

 安装教程:Ubuntu16.04 安装OpenCV&OpenCL_xiaozl_284的博客-CSDN博客_clinfo源码下载

OpenCL用于模型GPU加速,若不使用OpenCL进行模型推理加速,纯C++推理模型,速度会特别特别慢

  • base-utils:C++库

GitHub:https://github.com/PanJinquan/base-utils (无需安装,项目已经配置了)

base_utils是个人开发常用的C++库,集成了C/C++ OpenCV等常用的算法

  • TNN:模型推理

GitHub:https://github.com/Tencent/TNN (无需安装,项目已经配置了)

由腾讯优图实验室开源的高性能、轻量级神经网络推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时借鉴了业界主流开源框架高性能和良好拓展性的特性,拓展了对于后台X86, NV GPU的支持。手机端 TNN已经在手机QQ、微视、P图等众多应用中落地,服务端TNN作为腾讯云AI基础加速框架已为众多业务落地提供加速支持。

(3)部署TNN模型

项目实现了C/C++版本的车牌检测和车牌识别,车牌检测模型YOLOv5和车牌识别模型PlateNet,模型推理采用TNN部署框架(支持多线程CPU和GPU加速推理);图像处理采用OpenCV库,模型加速采用OpenCL,在普通设备即可达到实时处理。

如果你想在这个 Demo部署你自己训练的车牌检测模型YOLOv5和车牌识别模型PlateNet,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把原始的模型替换成你自己的TNN模型即可。

(4)CMake配置

这是CMakeLists.txt,其中主要配置OpenCV+OpenCL+base-utils+TNN这四个库,Windows系统下请自行配置和编译

cmake_minimum_required(VERSION 3.5)
project(Detector)add_compile_options(-fPIC) # fix Bug: can not be used when making a shared object
set(CMAKE_CXX_FLAGS "-Wall -std=c++11 -pthread")
#set(CMAKE_CXX_FLAGS_RELEASE "-O2 -DNDEBUG")
#set(CMAKE_CXX_FLAGS_DEBUG "-g")if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)# -DCMAKE_BUILD_TYPE=Debug# -DCMAKE_BUILD_TYPE=Releasemessage(STATUS "No build type selected, default to Release")set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Build type (default Debug)" FORCE)
endif ()# opencv set
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS} ./src/)
#MESSAGE(STATUS "OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}")# base_utils
set(BASE_ROOT 3rdparty/base-utils) # 设置base-utils所在的根目录
add_subdirectory(${BASE_ROOT}/base_utils/ base_build) # 添加子目录到build中
include_directories(${BASE_ROOT}/base_utils/include)
include_directories(${BASE_ROOT}/base_utils/src)
MESSAGE(STATUS "BASE_ROOT = ${BASE_ROOT}")# TNN set
# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake buil ds it for you.
# Gradle automatically packages shared libraries with your APK.
# build for platform
# set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
if (CMAKE_SYSTEM_NAME MATCHES "Android")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_ARM_ENABLE ON CACHE BOOL "" FORCE)set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread#set(TNN_HUAWEI_NPU_ENABLE OFF CACHE BOOL "" FORCE)add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DTNN_ARM_ENABLE)              # for Android CPUadd_definitions(-DDEBUG_ANDROID_ON)            # for Android Logadd_definitions(-DPLATFORM_ANDROID)
elseif (CMAKE_SYSTEM_NAME MATCHES "Linux")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)set(TNN_X86_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Threadadd_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DDEBUG_ON)                    # for WIN/Linux Logadd_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Logadd_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV showadd_definitions(-DPLATFORM_LINUX)
elseif (CMAKE_SYSTEM_NAME MATCHES "Windows")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)set(TNN_X86_ENABLE ON CACHE BOOL "" FORCE)set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Threadadd_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DDEBUG_ON)                    # for WIN/Linux Logadd_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Logadd_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV showadd_definitions(-DPLATFORM_WINDOWS)
endif ()
set(TNN_ROOT 3rdparty/TNN)
include_directories(${TNN_ROOT}/include)
include_directories(${TNN_ROOT}/third_party/opencl/include)
add_subdirectory(${TNN_ROOT}) # 添加外部项目文件夹
set(TNN -Wl,--whole-archive TNN -Wl,--no-whole-archive)# set TNN library
MESSAGE(STATUS "TNN_ROOT = ${TNN_ROOT}")# Detector
include_directories(src)
set(SRC_LISTsrc/object_detection.cppsrc/classification.cppsrc/Interpreter.cpp)
add_library(dmcv SHARED ${SRC_LIST})
target_link_libraries(dmcv ${OpenCV_LIBS} base_utils)
MESSAGE(STATUS "DIR_SRCS = ${SRC_LIST}")add_executable(Detector src/main.cpp)
#add_executable(Detector src/main_for_detect.cpp)
#add_executable(Detector src/main_for_yolov5.cpp)
target_link_libraries(Detector dmcv ${TNN} -lpthread)

(5)main源码

主程序中函数main实现提供了面部表情识别的使用方法,支持图片,视频和摄像头测试

  •     test_image_file();   // 测试图片文件
  •     test_video_file();   // 测试视频文件
  •     test_camera();       //测试摄像头
//
// Created by Pan on 2020/6/24.
//#include "object_detection.h"
#include "classification.h"
#include <iostream>
#include <string>
#include <vector>
#include "file_utils.h"
#include "image_utils.h"using namespace dl;
using namespace vision;
using namespace std;const int num_thread = 1; // 开启CPU线程数目
DeviceType device = GPU;  // 选择运行设备CPU/GPU
// 人脸检测模型
const char *det_model_file = (char *) "../data/tnn/face/rfb-face-mask-320-320_sim.opt.tnnmodel";
const char *det_proto_file = (char *) "../data/tnn/face/rfb-face-mask-320-320_sim.opt.tnnproto";
ObjectDetectionParam model_param = FACE_MODEL;//模型参数
// 分类模型
const char *cls_model_file = (char *) "../data/tnn/emotion/mobilenet_v2_112_112.tnnmodel";
const char *cls_proto_file = (char *) "../data/tnn/emotion/mobilenet_v2_112_112.tnnproto";
ClassificationParam ClassParam = EMOTION_MODEL;//模型参数// 设置检测阈值
const float scoreThresh = 0.5;
const float iouThresh = 0.3;
ObjectDetection *detector = new ObjectDetection(det_model_file,det_proto_file,model_param,num_thread,device);Classification *classifier = new Classification(cls_model_file,cls_proto_file,ClassParam,num_thread,device);/**** 测试图片文件*/
void test_image_file() {//测试图片的目录string image_dir = "../data/test_image";std::vector<string> image_list = get_files_list(image_dir);for (string image_path:image_list) {cv::Mat bgr_image = cv::imread(image_path);bgr_image = image_resize(bgr_image, 960);if (bgr_image.empty()) continue;FrameInfo resultInfo;// 进行人脸检测detector->detect(bgr_image, &resultInfo, scoreThresh, iouThresh);// 进行图像分类classifier->detect(bgr_image, &resultInfo);// 可视化检测结果classifier->visualizeResult(bgr_image, &resultInfo);}delete detector;detector = nullptr;delete classifier;classifier = nullptr;printf("FINISHED.\n");
}/**** 测试视频文件* @return*/
int test_video_file() {//测试视频文件string video_file = "../data/video/video-test.mp4";cv::VideoCapture cap;bool ret = get_video_capture(video_file, cap);cv::Mat frame;while (ret) {cap >> frame;if (frame.empty()) break;FrameInfo resultInfo;// 进行人脸检测detector->detect(frame, &resultInfo, scoreThresh, iouThresh);// 进行图像分类classifier->detect(frame, &resultInfo);// 可视化检测结果classifier->visualizeResult(frame, &resultInfo, 20);}cap.release();delete detector;detector = nullptr;delete classifier;classifier = nullptr;printf("FINISHED.\n");return 0;}/**** 测试摄像头* @return*/
int test_camera() {int camera = 0; //摄像头ID号(请修改成自己摄像头ID号)cv::VideoCapture cap;bool ret = get_video_capture(camera, cap);cv::Mat frame;while (ret) {cap >> frame;if (frame.empty()) break;FrameInfo resultInfo;// 进行人脸检测detector->detect(frame, &resultInfo, scoreThresh, iouThresh);// 进行图像分类classifier->detect(frame, &resultInfo);// 可视化检测结果classifier->visualizeResult(frame, &resultInfo, 20);}cap.release();delete detector;detector = nullptr;delete classifier;classifier = nullptr;printf("FINISHED.\n");return 0;}int main() {test_image_file();   // 测试图片文件//test_video_file();   // 测试视频文件//test_camera();       //测试摄像头return 0;
}

(6)源码编译和运行

编译脚本,或者直接:bash build.sh

#!/usr/bin/env bash
if [ ! -d "build/" ];thenmkdir "build"
elseecho "exist build"
fi
cd build
cmake ..
make -j4
sleep 1
./demo
  • 如果你要测试CPU运行的性能,请修改src/main.cpp

DeviceType device = CPU;

  • 如果你要测试GPU运行的性能,请修改src/main.cpp (需配置好OpenCL) 

DeviceType device = GPU;

PS:纯CPU C++推理模式比较耗时,需要几秒的时间,而开启OpenCL加速后,GPU模式耗时仅需十几毫秒,性能极大的提高。

(7)Demo测试效果 

 C++版本与Python版本的结果几乎是一致,下面是面部表情识别效果展示(其中不同表情用不同颜色表示了)


5.项目源码下载

C++实现表情识别项目源码下载地址:面部表情识别4:C++实现表情识别(含源码,可实时检测)

整套项目源码内容包含:

  1. 提供C/C++版本的人脸检测模型
  2. 提供C/C++版本的面部表情分类模型
  3. C++源码支持CPU和GPU,开启GPU(OpenCL)可以实时检测和识别(纯CPU推理速度很慢,模型加速需要配置好OpenCL,GPU推理约15ms左右)
  4. 项目配置好了base-utils和TNN,而OpenCV和OpenCL需要自行编译安装
  5. C/C++ Demo支持图片,视频,摄像头测试

 Android面部表情识别APP Demo体验:https://download.csdn.net/download/guyuealian/87575425

或者链接: https://pan.baidu.com/s/16OOi-qCENP4WbIeSzO5e9g 提取码: cs5g 

如果你需要面部表情识别的训练代码,请参考:《面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)》面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)_AI吃大瓜的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/31911.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

printf %.*s 原来是这样

今天看代码时&#xff0c;看到这样一个printf&#xff0c;以前没见过这样的&#xff0c;也没这样用过&#xff0c;一下子还真不知道是什么意思&#xff1a; // Response is received. Print it struct mg_http_message *hm (struct mg_http_message *) ev_data; printf("…

扫雷(超详解+全部码源)

C语言经典游戏扫雷 前言一.游戏规则二.所需文件三.创建菜单四.游戏核心内容实现1.创建棋盘2.打印棋盘3.布置雷4.排查雷5.game()函数具体实现 五.游戏运行实操六.全部码源 前言 &#x1f600;C语言实现扫雷是对基础代码能力的考察。通过本篇文章你将学会如何制作出扫雷&#xff…

Spring 使用注解储存对象

文章目录 前言存储 Bean 对象五大注解五大注解示例配置包扫描路径读取bean的示例 方法注解 Bean Bean 命名规则重命名 Bean 前言 通过在 spring-config 中添加bean的注册内容&#xff0c;我们已经可以实现基本的Spring读取和存储对象的操作了&#xff0c;但在操作中我们发现读…

每日一题——滑动窗口的最大值

滑动窗口的最大值 题目链接 暴力解法 最容易想到的当然还是通过两层循环来暴力求解&#xff1a;一层循环用来移动窗口&#xff0c;一层循环用来在窗口内找到最大值。这种做法的时间复杂度为O(kN)&#xff0c;会超出时间限制&#xff0c;因此&#xff0c;我们要找到更加高效的…

springboot国际化

springboot国际化 不需要引入额外的jar包 参考&#xff1a;https://zhuanlan.zhihu.com/p/551605839 1.rources要创建Resource Bundle 2.yml配置中引入Resource Bundle 引入Resource Bundle spring:messages:encoding: UTF-8basename: i18n/messages_common3.创建国际化工具…

海思ss928部署手写数字识别模型

大致流程--------------------------------------------------------------------------------------------------------------------- 模型转换---------------------------------------------------------------------------------------------------- 1&#xff1a;准备MNI…

【EI复现】考虑区域多能源系统集群协同优化的联合需求侧响应模型(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

https的原理和方案

文章目录 https原理为什么要加密常见的加密方式对称加密非对称加密数据摘要&&数据指纹数据签名 https的几种工作方案方案一&#xff1a;只使用对称加密方案二&#xff1a;只使用非对称加密方案三&#xff1a;两端都使用非对称加密方案四&#xff1a;非对称加密 对称加…

CSS前端开发指南:创造精美的用户界面

简介&#xff1a; 《CSS前端开发指南&#xff1a;创造精美的用户界面》是一本旨在帮助读者掌握CSS技术&#xff0c;实现令人惊叹的前端用户界面的实用指南。无论您是初学者还是有经验的开发者&#xff0c;本书都将为您提供全面的知识和实用技巧&#xff0c;帮助您创建引人注目…

c语言每日一练(5)

前言&#xff1a;每日一练系列&#xff0c;每一期都包含5道选择题&#xff0c;2道编程题&#xff0c;博主会尽可能详细地进行讲解&#xff0c;令初学者也能听的清晰。每日一练系列会持续更新&#xff0c;暑假时三天之内必有一更&#xff0c;到了开学之后&#xff0c;将看学业情…

什么是设计模式?

目录 概述: 什么是模式&#xff01;&#xff01; 为什么学习模式&#xff01;&#xff01; 模式和框架的比较&#xff1a; 设计模式研究的历史 关于pattern的历史 Gang of Four(GoF) 关于”Design”Pattern” 重提&#xff1a;指导模式设计的三个概念 1.重用(reuse)…

opencv基础48-绘制图像轮廓并切割示例-cv2.drawContours()

绘制图像轮廓&#xff1a;drawContours函数 在 OpenCV 中&#xff0c;可以使用函数 cv2.drawContours()绘制图像轮廓。该函数的语法格式是&#xff1a; imagecv2.drawContours( image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]…

c基础扫雷

和三子棋一样&#xff0c;主函数先设计游戏菜单界面&#xff0c;这里就不做展示了。 初始化棋盘 初级扫雷大小为9*9的棋盘&#xff0c;但排雷是周围一圈进行排雷(8格)&#xff0c;而边界可能会越界。数组扩大了一圈,行和列都加了2&#xff0c;所以我们用一个11*11的数组来初始化…

UDS诊断笔记

文章目录 常见缩写简介UDS寻址模式1. 物理寻址&#xff08;点对点、一对一&#xff09;2. 功能寻址&#xff08;广播、一对多&#xff09;3. 功能寻址使用场景举例 UDS报文格式UDS协议栈网络层网络层功能网络层协议1. 单帧 SF&#xff08;Single Frame&#xff09;2. 首帧 FC&a…

教你一招:非计算机科班如何丝滑转码?

近年来&#xff0c;很多人想要从其他行业跳槽转入计算机领域。非计算机科班如何丝滑转码&#xff1f; 目录 一、确定方向 二、确定学习计划&#xff08;自学&#xff09; 三、学习 看到组里好多非科班姐妹决定转码之后&#xff0c;因为相关背景知识不足难以确定学习计划&am…

【机密计算-大厂有话说】微软 Open Enclave SDK

前言 机密计算是基于硬件支持的可信执行环境的&#xff0c;比如 Intel SGX 硬件技术上面的 enclave 以及 Arm Trustzone 上的 OT-TEE&#xff0c;不过这些异构的 TEE 之间差异还是蛮大的&#xff0c;所以亟需一种能够屏蔽 TEE 差异软件中间件或者 SDK&#xff0c;这就是本文将要…

生成测试报告,在Unittest框架中就是简单

测试套件&#xff08;Test Suite&#xff09;是测试用例、测试套件或两者的集合&#xff0c;用于组装一组要运行的测试&#xff08;多个测试用例集合在一起&#xff09;。 &#xff08;1&#xff09;创建一个测试套件&#xff1a; import unittest suite unittest.TestSuite…

面向开发人员的 Spring Boot 最佳实践

Spring Boot是一种广泛使用且非常流行的企业级高性能框架。以下是一些最佳实践和一些技巧&#xff0c;您可以使用它们来改进 Spring Boot 应用程序并使其更加高效。这篇文章会有点长&#xff0c;完整读完文章需要一些时间。 正确的包装风格 正确的打包将有助于轻松理解代码和…

【VUE】项目本地开启https访问模式(vite4)

在实际开发中&#xff0c;有时候需要项目以https形式进行页面访问/调试&#xff0c;下面介绍下非vue-cli创建的vue项目如何开启https 环境 vue: ^3.2.47vite: ^4.1.4 根据官方文档&#xff1a;开发服务器选项 | Vite 官方中文文档 ps&#xff1a;首次操作&#xff0c;不要被类…

Pyspark

2、DataFrame 2.1 介绍 在Spark语义中&#xff0c;DataFrame是一个分布式的行集合&#xff0c;可以想象为一个关系型数据库的表&#xff0c;或者一个带有列名的Excel表格。它和RDD一样&#xff0c;有这样一些特点&#xff1a; Immuatable&#xff1a;一旦RDD、DataFrame被创…