Sumdiv POJ - 1845
题意:
求ABA^BAB的所有约数之和mod 9901(1<=A,B<=5e7)
题解:
我们先将A分解质因子,表示为:p1c1∗p2c2∗......∗pncnp_{1}^{c_{1}}*p_{2}^{c_{2}}*......*p_{n}^{c_{n}}p1c1∗p2c2∗......∗pncn
约数之和我们是有公式的:
A的约数和是:(1+p1+p12+....+p1c1)∗....∗(1+pn+pn2+....+pncn)(1+p_{1}+p_{1}^2+....+p_{1}^{c_{1}})*....*(1+p_{n}+p_{n}^2+....+p_{n}^{c_{n}})(1+p1+p12+....+p1c1)∗....∗(1+pn+pn2+....+pncn)
ABA^BAB的所有约数之和为:
(1+p1+p12+....+p1B∗c1)∗....∗(1+pn+pn2+....+pnB∗cn)(1+p_{1}+p_{1}^2+....+p_{1}^{B*c_{1}})*....*(1+p_{n}+p_{n}^2+....+p_{n}^{B*c_{n}})(1+p1+p12+....+p1B∗c1)∗....∗(1+pn+pn2+....+pnB∗cn)
不难发现,每一项都是一个等比序列,我们用等比序列求和,(1+p1+p12+....+p1B∗c1)=(p1B∗c1+1−1)/(p1−1)(1+p_{1}+p_{1}^2+....+p_{1}^{B*c_{1}})=(p_{1}^{B*c_{1}+1}-1)/(p_{1}-1)(1+p1+p12+....+p1B∗c1)=(p1B∗c1+1−1)/(p1−1)
对于分子分母我们分开求,用快速幂求即可,分母逆元
但是这样并没有结束,什么时候b的逆元是bp−2b^{p-2}bp−2,当p是质数且b与m互质时,本题中9901是质数,但是p1−1p_{1}-1p1−1有可能是9901的倍数,此时乘法逆元就不存在。这种情况特判,此时(1+p1+p12+....+p1B∗c1)≡1+1+12+...+1B∗c1≡B∗c1+1(mod9901)(1+p_{1}+p_{1}^2+....+p_{1}^{B*c_{1}})\equiv 1+1+1^2+...+1^{B*c_{1}}\equiv B*c_{1}+1(\bmod 9901)(1+p1+p12+....+p1B∗c1)≡1+1+12+...+1B∗c1≡B∗c1+1(mod9901)
代码:
// Problem: Sumdiv
// Contest: Virtual Judge - POJ
// URL: https://vjudge.net/problem/POJ-1845
// Memory Limit: 30 MB
// Time Limit: 1000 ms
// Data:2021-08-26 14:17:14
// By Jozky#include <cmath>
#include <cstdio>
#include <ctime>
#include <iostream>
// #include <unordered_map>
#define debug(a, b) printf("%s = %d\n", a, b);
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
clock_t startTime, endTime;
//Fe~Jozky
const ll INF_ll= 1e18;
const int INF_int= 0x3f3f3f3f;
void read(){};
template <typename _Tp, typename... _Tps> void read(_Tp& x, _Tps&... Ar)
{x= 0;char c= getchar();bool flag= 0;while (c < '0' || c > '9')flag|= (c == '-'), c= getchar();while (c >= '0' && c <= '9')x= (x << 3) + (x << 1) + (c ^ 48), c= getchar();if (flag)x= -x;read(Ar...);
}
template <typename T> inline void write(T x)
{if (x < 0) {x= ~(x - 1);putchar('-');}if (x > 9)write(x / 10);putchar(x % 10 + '0');
}
void rd_test()
{
#ifdef LOCALstartTime= clock();freopen("in.txt", "r", stdin);
#endif
}
void Time_test()
{
#ifdef LOCALendTime= clock();printf("\nRun Time:%lfs\n", (double)(endTime - startTime) / CLOCKS_PER_SEC);
#endif
}
int a, b, m, ans= 1;
const int mod= 9901;
int p[20], c[20];
void divide(int n)
{m= 0;for (int i= 2; i <= sqrt(n); i++) {if (n % i == 0) {p[++m]= i;c[m]= 0;while (n % i == 0) {n/= i;c[m]++;}}}if (n > 1) {p[++m]= n;c[m]= 1;}
}
ll poww(ll a, ll b)
{ll ans= 1;while (b) {if (b & 1)ans= ans * a % mod;a= a * a % mod;b>>= 1;}return ans;
}
int main()
{//rd_test();cin >> a >> b;divide(a);for (int i= 1; i <= m; i++) {if ((p[i] - 1) % mod == 0) {ans= ((1ll * b * c[i] + 1) % mod) * ans % mod;continue;}int x= poww(p[i], 1ll * b * c[i] + 1); //分子x= (x - 1 + mod) % mod;int y= p[i] - 1; //分母y= poww(y, mod - 2);ans= 1ll * ans * x % mod * y % mod;}cout << ans << endl;//Time_test();
}