P4064 [JXOI2017]加法
题意:
题解:
要求找最小值尽可能大,很明显二分,现在是如何判断二分出来的答案的正确性
对于一个二分出来的答案mid,要求对k个区间进行操作后,最小值大于mid,我们可以这样实现,对于第i位,(前i-1位已经处理完毕,且前i-1位均大于等于mid),此时我们要找的区间是要包含第i位的,也就是区间的左端点一定小于等于i,而对于右端点,一定是越远越好,右端点越远,就可以让更多的数增加,更容易使得所有数都大于等于mid
怎么才能实现合理选取区间这个操作,我们用一个最大堆,每次将左端点小于i的区间加入其中,然后选取堆顶的区间。因为我们是从左往右依次处理,那么这个堆就可以继承给下一个点使用
代码:
#include <bits/stdc++.h>
#include <unordered_map>
#define debug(a, b) printf("%s = %d\n", a, b);
using namespace std;
bool Handsome;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
clock_t startTime, endTime;
//Fe~Jozky
const ll INF_ll= 1e18;
const int INF_int= 0x3f3f3f3f;
void read(){};
template <typename _Tp, typename... _Tps> void read(_Tp& x, _Tps&... Ar)
{x= 0;char c= getchar();bool flag= 0;while (c < '0' || c > '9')flag|= (c == '-'), c= getchar();while (c >= '0' && c <= '9')x= (x << 3) + (x << 1) + (c ^ 48), c= getchar();if (flag)x= -x;read(Ar...);
}
template <typename T> inline void write(T x)
{if (x < 0) {x= ~(x - 1);putchar('-');}if (x > 9)write(x / 10);putchar(x % 10 + '0');
}
void rd_test(bool &Most)
{
#ifdef ONLINE_JUDGE
#elseprintf("%.2lfMB\n",(&Most-&Handsome)/1024.0/1024.0);startTime = clock ();freopen("data.in", "r", stdin);
#endif
}
void Time_test()
{
#ifdef ONLINE_JUDGE
#elseendTime= clock();printf("\nRun Time:%lfs\n", (double)(endTime - startTime) / CLOCKS_PER_SEC);
#endif
}
const int maxn=3e5+9;
#define int long long
int A[maxn];
int n,m,k,a;
int lowbit(int x){return x&(-x);
}
struct node{int l,r;bool operator<(const node &x)const{return r<x.r;}
};
int V[maxn];
struct nod{int l,r;
};
nod q[maxn];
nod x;
int N=2e5+9;
void add(int x,int val){for(int i=x;i<=N;i+=lowbit(i)){V[i]+=val;}
}
ll query(int x){ll sum=0;for(int i=x;i;i-=lowbit(i)){sum+=V[i];} return sum;
}
bool check(int mid){memset(V,0,sizeof(V));priority_queue<node>Q;for(int i=1;i<=n;i++){add(i,A[i]-A[i-1]);}int tot=0;int num=1;for(int i=1;i<=n;i++){while(q[num].l<=i&&num<=m){Q.push((node){q[num].l,q[num].r});num++;}while(query(i)<mid&&Q.size()){node x=Q.top();Q.pop();if(x.r<i||++tot>k)return 0;add(x.l,a);add(x.r+1,-a);}if(query(i)<mid)return 0;}return 1;
}
int val[maxn];
bool Most;
bool cmp(nod x,nod y){return x.l<y.l;
}
signed main()
{
// rd_test(Most);int t;read(t);while(t--){int minn=1e18+9;int maxx=0;read(n,m,k,a);for(int i=1;i<=n;i++){read(A[i]);minn=min(A[i],minn);maxx=max(A[i],maxx);}for(int i=1;i<=m;i++){read(q[i].l,q[i].r);}sort(q+1,q+1+m,cmp);int ans;int l=minn,r=maxx+k*a;while(l<=r){int mid=l+r>>1;if(check(mid)){ans=mid;l=mid+1;}else r=mid-1;}printf("%lld\n",ans);}//Time_test();
}