HDU 6061 RXD and functions(NTT)

RXD and functions

首先是有一个结论,对多项式做任意多次 transformation ,其结果跟做一次 transformation Tr(f,∑i=1mai)Tr(f, \sum\limits_{i = 1} ^{m} a_i)Tr(f,i=1mai)的结果是一样的,所以我们约定a=−∑i=1maia = -\sum\limits_{i = 1} ^{m} a_ia=i=1mai
g=f(x+a)∑i=0nci(x+a)i∑i=0n∑j=0icii!j!(i−j)!xjai−j我们考虑只求这个多项式的xj系数gj=∑i=jncii!j!(i−j)!ai−jgj=∑i=0n−jci+j(i+j)!j!i!aigj=1j!∑i=0n−j(ci+j(i+j)!)×(aii!)设f(n)=cnn!,h(n)=ann!不难发现后项像是多项式卷积的形式,考虑翻转aii,即i=n−igj=1j!∑i=0n−jf(i+j)h(n−i)这就是一个完美的卷积形式了,于是可以NTT求解g = f(x + a)\\ \sum_{i = 0} ^{n} c_i(x + a) ^ i\\ \sum_{i = 0} ^{n} \sum_{j = 0} ^{i}c_i \frac{i!}{j!(i - j)!} x ^ j a ^ {i - j}\\ 我们考虑只求这个多项式的x ^ j系数\\ g_j = \sum_{i = j} ^{n} c_i \frac{i!}{j!(i - j)!}a ^{i - j}\\ g_j = \sum_{i = 0} ^{n - j} c_{i + j} \frac{(i + j)!}{j! i!} a ^ i\\ g_j = \frac{1}{j!} \sum_{i = 0} ^{n - j} (c_{i + j} (i + j)!) \times (\frac{a ^i}{i!})\\ 设f(n) = c_{n} n!, h(n) = \frac{a ^ n}{n!} \\ 不难发现后项像是多项式卷积的形式,考虑翻转\frac{a ^ i}{ i},即i = n - i\\ g_j = \frac{1}{j!} \sum_{i = 0} ^{n - j} f(i + j) h(n - i)\\ 这就是一个完美的卷积形式了,于是可以NTT求解 g=f(x+a)i=0nci(x+a)ii=0nj=0icij!(ij)!i!xjaijxjgj=i=jncij!(ij)!i!aijgj=i=0njci+jj!i!(i+j)!aigj=j!1i=0nj(ci+j(i+j)!)×(i!ai)f(n)=cnn!,h(n)=n!aniaii=nigj=j!1i=0njf(i+j)h(ni)NTT

#include <bits/stdc++.h>using namespace std;const int N = 1e6 + 10, mod = 998244353;int r[N];int quick_pow(int a, int n) {int ans = 1;while (n) {if (n & 1) {ans = 1ll * a * ans % mod;}a = 1ll * a * a % mod;n >>= 1;}return ans;
}void get_r(int lim) {for (int i = 0; i < lim; i++) {r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);}
}void NTT(int *f, int lim, int rev) {for (int i = 0; i < lim; i++) {if (i < r[i]) {swap(f[i], f[r[i]]);}}for (int mid = 1; mid < lim; mid <<= 1) {int wn = quick_pow(3, (mod - 1) / (mid << 1));for (int len = mid << 1, cur = 0; cur < lim; cur += len) {int w = 1;for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;}}}if (rev == -1) {int inv = quick_pow(lim, mod - 2);reverse(f + 1, f + lim);for (int i = 0; i < lim; i++) {f[i] = 1ll * f[i] * inv % mod;}}
}int a[N], c[N], A[N], B[N], fac[N], ifac[N], n, m, sum;void init() {fac[0] = 1;for (int i = 1; i < N; i++) {fac[i] = 1ll * fac[i - 1] * i % mod;}ifac[N - 1] = quick_pow(fac[N - 1], mod - 2);for (int i = N - 2; i >= 0; i--) {ifac[i] = 1ll * ifac[i + 1] * (i + 1) % mod;}
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();while (scanf("%d", &n) != EOF) {for (int i = 0; i <= n; i++) {scanf("%d", &c[i]);}scanf("%d", &m);sum = 0;for (int i = 1; i <= m; i++) {scanf("%d", &a[i]);sum = (sum + a[i]) % mod;}sum = (mod - sum) % mod;int cur = 1;for (int i = 0; i <= n; i++) {A[i] = 1ll * c[i] * fac[i] % mod;B[n - i] = 1ll * ifac[i] * cur % mod;cur = 1ll * cur * sum % mod;}int lim = 1;while (lim <= 2 * n) {lim <<= 1;}get_r(lim);NTT(A, lim, 1);NTT(B, lim, 1);for (int i = 0; i < lim; i++) {A[i] = 1ll * A[i] * B[i] % mod;}NTT(A, lim, -1);for (int i = 0; i <= n; i++) {printf("%lld ", 1ll * ifac[i] * A[n + i] % mod);}puts("");for (int i = 0; i < lim; i++) {A[i] = B[i] = 0;}}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/313873.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java语法糖

Java中语法糖原理、解语法糖 语法糖&#xff1a;switch 支持 String 与枚举、泛型、自动装箱与拆箱、方法变长参数、枚举、内部类、条件编译、 断言、数值字面量、for-each、try-with-resource、Lambda表达式、 先Mark&#xff0c;需要后续补齐、 参考&#xff1a; https://w…

使用Ingress来负载分发微服务

目录 使用Ingress来负载分发微服务 Demo规划 准备Demo并完成部署 创建部署&#xff08;Deployment&#xff09;资源 创建服务&#xff08;Service&#xff09;资源 创建Ingress资源并配置转发规则 使用Ingress来负载分发微服务NodePort Service存在太多缺陷&#xff0c;不适合…

伯努利数(详解 + 例题 :P3711 仓鼠的数学题)

伯努利数 定义Sk(n)∑i0n−1ikS_k(n) \sum\limits_{i 0} ^{n - 1} i ^ kSk​(n)i0∑n−1​ik。 从二项式出发 (01)k1∑i0kCk1i0i0k1⋮(n−11)k1∑i0kCk1i(n−1)i(n−1)k1把次方k1的移项&#xff0c;再整体相加&#xff0c;得nk1∑i0kCk1iSi(n)nk1∑i0k−1Ck1iSi(n)(k1)Sk(n…

并发和并行及多线程基本概念

并发&#xff08;Concurrent&#xff09; 在操作系统中&#xff0c;是指一个时间段中有几个程序都处于已启动运行到运行完毕之间&#xff0c;且这几个程序都是在同一个处理机上运行&#xff0c;但任一个时刻点上只有一个程序在处理机上运行。 并发&#xff0c;本质上是一个物理…

XUnit 依赖注入

XUnit 依赖注入Intro现在的开发中越来越看重依赖注入的思想&#xff0c;微软的 Asp.Net Core 框架更是天然集成了依赖注入&#xff0c;那么在单元测试中如何使用依赖注入呢&#xff1f;本文主要介绍如何通过 XUnit 来实现依赖注入&#xff0c; XUnit 主要借助 SharedContext 来…

P3711 仓鼠的数学题(伯努利数)

P3711 仓鼠的数学题 有关伯努利数的知识可以看我的上一篇题解链接&#xff08;写的超详细&#xff09;。 F(x)∑k0nSk(x)ak原本定义的Sk(x)∑i0xik根据伯努利数的定义Sk′(x)∑i0x−1ik则我们求F(x)∑k0nSk′(x)ak,答案即为F(x1)考虑先求F(x)∑k0nak1k1∑i0kCk1iBixk−i1∑k0n…

程序员自家种水果,新鲜包邮配送!

点击上面“蓝字”关注我们&#xff01;上次猕猴桃的活动一经推出&#xff0c;得到了广大粉丝的支持&#xff0c;我感到十分欣慰&#xff0c;非常感谢大家对我的信任。好多小伙伴&#xff0c;买了一箱尝过后又下单了好几箱。事实证明&#xff0c;品质才是销量的最佳保证。有些粉…

实现一个简单的基于码云(Gitee) 的 Storage

实现一个简单的基于码云(Gitee) 的 StorageIntro上次在 asp.net core 从单机到集群 一文中提到存储还不支持分布式&#xff0c;并立了一个 flag基于 github 或者 开源中国的码云实现一个 storage于是这两天就来填坑了。。实现了一个简单的基于开源中国的码云的 storage准备工作…

Java多线程的4种实现方式

** Java多线程的4种实现方式 ** 1&#xff1a;继承Thread并重写run方法&#xff0c;并调用start方法 /*** Java实现多线程的方式1* 继承Thread类&#xff0c;重写run方法* author hongbo.zhao 2019年4月12日 上午7:12:35*/ class MyThread extends Thread {Overridepublic …

采蘑菇的克拉莉丝(树链剖分)

采蘑菇的克拉莉丝 一个有点意思的树链剖分的题。 题意&#xff1a; 一棵树&#xff0c;有两种操作&#xff1a; ①&#xff1a;在点vvv放xxx个蘑菇。 ②&#xff1a;将起点变为vvv。 每次计算收集所有蘑菇的代价。 收集蘑菇的代价为&#xff0c;起点到所在蘑菇的路径上的…

HDU 6428 Problem C. Calculate(积性函数)

Problem C. Calculate ϕϕ∗ϵϕ∗μ∗Iϕ(n)∑d∣n(ϕ∗μ)(d)设g(n)∑d∣n(ϕ∗μ)(d)∑i1A∑j1B∑k1Cϕ(gcd(i,j2,k3))∑i1A∑j1B∑k1C∑d∣i,d∣j2,d∣k3(ϕ∗μ)(d)∑d1A(ϕ∗μ)(d)∑i1A∑j1B∑k1C[d∣i,d∣j2,d∣k3]\phi \phi * \epsilon \phi * \mu * I\\ \phi(n) …

Java线程的6种状态

线程的概念&#xff0c;以及线程的创建方式&#xff0c;见我之前写的博文 本篇文章主要讲Java线程的6种状态 6种状态&#xff1a;初始状态&#xff08;new&#xff09; 、可运行状态&#xff08;Runnable&#xff09;、运行状态&#xff08;Running&#xff09;、阻塞状态&am…

C. Goodbye Souvenir(CDQ 或 树套树)

C. Goodbye Souvenir ∑iLRi−preAi[preAi≥L]\sum\limits_{i L} ^{R} i - pre_{A_i} [pre_{A_i} \geq L]iL∑R​i−preAi​​[preAi​​≥L]&#xff0c;进一步考虑即∑i−preAi[i≤R,preAi≥L]\sum i - pre_{A_i}[i \leq R, pre_{A_i} \geq L]∑i−preAi​​[i≤R,preAi​​…

.NET Core 微信小程序支付——(统一下单)

最近公司研发了几个电商小程序&#xff0c;还有一个核心的电商直播&#xff0c;只要是电商一般都会涉及到交易信息&#xff0c;离不开支付系统&#xff0c;这里我们统一实现小程序的支付流程&#xff08;与服务号实现步骤一样&#xff09;。目录1、开通小程序的支付能力2、商户…

P4768 [NOI2018] 归程(kruskal 重构树)

P4768 [NOI2018] 归程 给定一个nnn个点&#xff0c;mmm条边的无向联通图&#xff0c;边的描述为[u,v,l,a][u, v, l, a][u,v,l,a]&#xff0c;表示uuu&#xff0c;vvv连有一条长度为lll&#xff0c;海拔为aaa的边&#xff0c; 有QQQ个询问&#xff0c;每次给出一个出发点uuu和…

用.NET写“算命”程序

前言“算命”&#xff0c;是一种迷信&#xff0c;我父亲那一辈却执迷不悟&#xff0c;有时深陷其中&#xff0c;有时为求一“上上签”&#xff0c;甚至不惜重金&#xff0c;向“天神”保佑。我曾看到过有些算命网站&#xff0c;可以根据人的生辰八字&#xff0c;来求得这个人一…

Java线程调度

线程调度指的是系统为线程分配CPU使用权的方式。主要有协同式线程调度和抢占式线程调度。 协同式线程调度&#xff08;Cooperative Threads-Scheduling&#xff09; 在多线程系统中&#xff0c;线程的执行时间由线程自身控制&#xff0c;执行结束后要主动通知系统切换到另一线…

#3551. [ONTAK2010]Peaks加强版(kruskal 重构树 + 主席树)

#3551. [ONTAK2010]Peaks加强版 我们要求从一个点出发经过困难值小于等于xxx的路径所能到达的山峰中第kkk高的是什么。 考虑按照边权升序&#xff0c;建议kruskalkruskalkruskal重构树&#xff0c;然后倍增向上跳&#xff0c;找到困难值小于等于xxx的深度最小的节点uuu&#…

ASP.NET Core 3.0 迁移避坑指南

一.前言.NET Core 3.0将会在 .NET Conf 大会上正式发布&#xff0c;截止今日发布了9个预览版&#xff0c;改动也是不少&#xff0c;由于没有持续关注&#xff0c;今天将前面开源的动态WebApi项目迁移到.NET Core 3.0还花了不少时间踩坑&#xff0c;给大家分享一下我在迁移过程中…

kruskal 重构树(讲解 + 例题)

kruskal重构树 如何建树 模仿kruskalkruskalkruskal&#xff0c;先将所有边排序。 依次遍历每一条边&#xff0c;如果这条边的两个节点&#xff08;u,vu, vu,v&#xff09;不在同一个连通块里面&#xff0c; 则新建一个nodenodenode节点&#xff0c;更新fa[u]fa[v]nodefa[u…