#4604. The kth maximum number(整体二分 + 树套树)

#4604. The kth maximum number

给定一个大小不超过5×1055 \times 10 ^ 55×105的矩形区域,有一些点有点权。

每次询问给定x1,y1,x2,y2,kx_1, y_1, x_2, y_2, kx1,y1,x2,y2,k问以x1,y1x_1, y_1x1,y1为右下角,x2,y2x_2, y_2x2,y2为左上角的矩形中权值第kkk大是多少。

其实于P1527 [国家集训队]矩阵乘法是基本差不多的,就是矩形的大小变大了,无法进行二维树状数组操作

但是,矩形数点不就是一个二维偏序问题嘛,可以树套树来解决,于是我们有了如下的做法,

考虑整体二分,

先对x,yx, yx,y进行离散化(保证常数小一点吧),对每个横左边建立一颗主席树,同时用树状数组维护,

于是在二分过程中,我们对每个点的修改操作,直接修改即可,同时对主席树加上内存回收机制,这样可以保证不会炸空间,

之后对每个矩阵的查询,我们只要在区间[x1,x2][x_1, x_2][x1,x2]的主席树上查询值在[y1,y2][y_1, y_2][y1,y2]有多少即可,

整体复杂度O(nlog⁡3n)O(n \log ^ 3 n)O(nlog3n),由于nnn比较小,实测跑得还是挺快的。

#include <bits/stdc++.h>using namespace std;const int N = 1e5 + 10;int X[N], Y[N], V[N], ans[N], n, m, nn, mm, tot;int root[N], ls[N * 300], rs[N * 300], sum[N * 300], stk[N * 300], top, num;void update(int &rt, int l, int r, int x, int v) {if (!rt) {if (top) {rt = stk[top--];}else {rt = ++num;}}sum[rt] += v;if (l == r) {return ;}int mid = l + r >> 1;if (x <= mid) {update(ls[rt], l, mid, x, v);}else {update(rs[rt], mid + 1, r, x, v);}
}int A[50], B[50], cnt1, cnt2;int query(int l, int r, int L, int R) {if (l >= L && r <= R) {int res = 0;for (int i = 1; i <= cnt1; i++) {res -= sum[A[i]];}for (int i =1 ; i <= cnt2; i++) {res += sum[B[i]];}return res;}int mid = l + r >> 1, res = 0, A1[50], B1[50];if (L <= mid) {for (int i = 1; i <= cnt1; i++) {A1[i] = A[i];A[i] = ls[A[i]];}for (int i = 1; i <= cnt2; i++) {B1[i] = B[i];B[i] = ls[B[i]];}res += query(l, mid, L, R);for (int i = 1; i <= cnt1; i++) {A[i] = A1[i];}for (int i = 1; i <= cnt2; i++) {B[i] = B1[i];}}if (R > mid) {for (int i = 1; i <= cnt1; i++) {A1[i] = A[i];A[i] = rs[A[i]];}for (int i = 1; i <= cnt2; i++) {B1[i] = B[i];B[i] = rs[B[i]];}res += query(mid + 1, r, L, R);for (int i = 1; i <= cnt1; i++) {A[i] = A1[i];}for (int i = 1; i <= cnt2; i++) {B[i] = B1[i];}}return res;
}inline int lowbit(int x) {return x & (-x);
}void update(int x, int y, int v) {while (x <= nn) {update(root[x], 1, mm, y, v);x += lowbit(x);}
}int get_sum(int l, int r, int L, int R) {if (l > r || L > R) {return 0;}cnt1 = cnt2 = 0;for (int i = l - 1; i; i -= lowbit(i)) {A[++cnt1] = root[i];}for (int i = r; i; i -= lowbit(i)) {B[++cnt2] = root[i];}return query(1, mm, L, R);
}struct Res {int x1, y1, x2, y2, v, id, op;
}q[N], q1[N], q2[N];void solve(int l, int r, int L, int R) {if (L > R || l > r) {return ;}if (l == r) {for (int i = L; i <= R; i++) {if (q[i].op == 2) {ans[q[i].id] = l;}}return ;}int mid = l + r >> 1, cnt1 = 0, cnt2 = 0;for (int i = L; i <= R; i++) {if (q[i].op == 1) {if (q[i].v > V[mid]) {update(q[i].x1, q[i].y1, 1);q2[++cnt2] = q[i];}else {q1[++cnt1] = q[i];}}else {int cur = get_sum(q[i].x1, q[i].x2, q[i].y1, q[i].y2);if (cur >= q[i].v) {q2[++cnt2] = q[i];}else {q[i].v -= cur;q1[++cnt1] = q[i];}}}for (int i = 1; i <= cnt2; i++) {if (q2[i].op == 1) {update(q2[i].x1, q2[i].y1, -1);}}for (int i = 1; i <= cnt1; i++) {q[L + i - 1] = q1[i];}for (int i = 1; i <= cnt2; i++) {q[L + cnt1 + i - 1] = q2[i];}solve(l, mid, L, L + cnt1 - 1), solve(mid + 1, r, L + cnt1, R);
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);scanf("%d %d", &n, &m);for (int i = 1, op; i <= m; i++) {scanf("%d", &op);if (op & 1) {int x, y, v;scanf("%d %d %d", &x, &y, &v);q[i] = {x, y, 0, 0, v, 0, 1};X[++tot] = x, Y[tot] = y, V[tot] = v;}else {int x1, y1, x2, y2, v;scanf("%d %d %d %d %d", &x1, &y1, &x2, &y2, &v);q[i] = {x1, y1, x2, y2, v, i, 2};}}sort(X + 1, X + 1 + tot), sort(Y + 1, Y + 1 + tot), sort(V + 1, V + 1 + tot);nn = unique(X + 1, X + 1 + tot) - (X + 1);mm = unique(Y + 1, Y + 1 + tot) - (Y + 1);tot = unique(V + 1, V + 1 + tot) - (V + 1);for (int i = 1; i <= m; i++) {if (q[i].op & 1) {q[i].x1 = lower_bound(X + 1, X + 1 + nn, q[i].x1) - X;q[i].y1 = lower_bound(Y + 1, Y + 1 + mm, q[i].y1) - Y;}else {q[i].x1 = lower_bound(X + 1, X + 1 + nn, q[i].x1) - X;q[i].y1 = lower_bound(Y + 1, Y + 1 + mm, q[i].y1) - Y;q[i].x2 = upper_bound(X + 1, X + 1 + nn, q[i].x2) - X;q[i].y2 = upper_bound(Y + 1, Y + 1 + mm, q[i].y2) - Y;q[i].x2--, q[i].y2--;}}for (int i = 1; i <= m; i++) {ans[i] = -1;}solve(0, tot, 1, m);for (int i = 1; i <= m; i++) {if (ans[i] != -1) {if (ans[i] == 0) {puts("NAIVE!ORZzyz.");}else {printf("%d\n", V[ans[i]]);}}}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/313782.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解 JVM Class文件格式(十)

到此&#xff0c; 所有关于class文件格式的重要内容都已经讲解完了&#xff0c; 不敢说面面俱到&#xff0c; 但是敢说大部分重要的内容都包含在内了。前前后后用了9篇博客来专门讲解class文件结构&#xff0c; 为什么花那么多的时间和精力来介绍class文件呢&#xff1f; 简而言…

《WTM送书活动:向更遥远的星辰大海起航~》

点击上方蓝字关注我们吧是的,没错~这一篇不是大老刘写的 哈哈~啥? 你想知道为啥? 大老刘为了你们不加班,熬夜改BUG,姑娘不乐意了...然后...后面请自行脑补~哎~生活还要继续鸭....那么,接下来由我陪大家唠一段儿~ 单口...各位看官老爷们:注意了!第一件事情呢我们的WTM框…

P4602 [CTSC2018]混合果汁(主席树)

P4602 [CTSC2018]混合果汁 共有nnn种果汁&#xff0c;第iii种果汁的美味度为did_idi​&#xff0c;每升价格为pip_ipi​&#xff0c;在一瓶混合果汁中&#xff0c;最多只能添加lil_ili​升。 有mmm个询问&#xff0c;每次询问给出两个数g,Lg, Lg,L&#xff0c;我们要找出价格…

Java中的对象一定在堆上分配吗?

首先&#xff0c;为解释这个问题&#xff0c;需要的基本知识如下&#xff08;如果对以下概念不太熟悉&#xff0c; 可以先了解下&#xff09;&#xff1a; 1.JVM内存结构&#xff0c;传送门 2.即时编译&#xff08;JIT&#xff09;&#xff0c;传送门 3. 逃逸分析&#xff0c;…

最全的 netcore 3.0 升级实战方案

1、哈喽大家中秋节&#xff08;后&#xff09;好呀&#xff01;感觉已经好久没有写文章了&#xff0c;但是也没有偷懒哟&#xff0c;我的视频教程《系列一、NetCore 视频教程&#xff08;Blog.Core&#xff09;》也已经录制八期了&#xff0c;还在每周末同步更新中&#xff0c;…

H - Hello Ms. Ze(树状数组套主席树,线段树上二分)

H - Hello Ms. Ze 给定nnn种不同的材料&#xff0c;第iii种材料有aia_iai​个&#xff0c;有mmm个操作&#xff0c;操作分为两类&#xff1a; 把第xxx种材料修改为yyy个&#xff0c;只用[l,r][l, r][l,r]区间的材料制作衣服&#xff0c;每件衣服要用kkk个不同的材料&#xff…

JVM——逃逸分析

首先&#xff0c;为解释这个问题&#xff0c;需要的基本知识如下&#xff08;如果对以下概念不太熟悉&#xff0c; 可以先Google下&#xff09;&#xff1a; 1.JVM内存结构&#xff0c;传送门 2.即时编译&#xff08;JIT&#xff09;&#xff0c;传送门 逃逸分析 在编译期间…

ASP.NET Core SignalR:集线器Hub

一、什么是集线器hubs通过SignalR的集线器hubs中定义的方法&#xff0c;服务器可以调用连接中的客户端定义的方法&#xff0c;而客户端也可以调用服务器端集线器中定义的方法。SignalR负责实现了客户端和服务器之间的实时通信。二、配置SignalR的hubsSignalR通过在Startup.Conf…

P6271 [湖北省队互测2014]一个人的数论(莫比乌斯反演 + 伯努利数)

P6271 [湖北省队互测2014]一个人的数论 ∑i1nim[gcd⁡(i,n)1]∑d∣nμ(d)dm∑i1ndim由伯努利数可知∑i0nim1m1∑i0mCm1iBi(n1)m−i1设fi1m1Bm−i1Cm1i,则有∑d∣nμ(d)dm(∑i1m1fi(nd)i(nd)m)∑i1m1fini∑d∣nμ(d)dm−i(nm∑d∣nμ(d))考虑后项∑d∣nμ(d)dm−i&#xff0c;迪…

Java面试题汇总

1、综合素质层面 个人介绍、离职原因、兴趣爱好等 https://mp.weixin.qq.com/s?__bizMzI3NzE0NjcwMg&mid2650121143&idx2&snf4c4f26bc5d2132352f12d28c8cb2264&chksmf36bbe96c41c3780d8086adec7be8737ce3718db9c2a7fa33aa7591f8ae179ed3240286f3886&scen…

微软发布.Net Core 3.0 RC1,最终版本定于9月23日

2019.9.17 微软 宣布推出.NET Core 3.0 Release Candidate 1。就像Preview 9一样&#xff0c;主要专注于为 .NET Core 3.0 发布最终版本 。现在变得非常非常接近。将在9月23日.NET Conf上发布最终版本。.NET Core 3.0是从仅支持Windows传统的 .NET框架向更现代化的开源实现过渡…

JVM内存结构 VS Java内存模型 VS Java对象模型

Java作为一种面向对象的&#xff0c;跨平台语言&#xff0c;其对象、内存等一直是比较难的知识点。而且很多概念的名称看起来又那么相似&#xff0c;很多人会傻傻分不清楚。比如本文我们要讨论的JVM内存结构、Java内存模型和Java对象模型&#xff0c;这就是三个截然不同的概念&…

ZOJ The Sum of Unitary Totient(min_25 筛)

The Sum of Unitary Totient 积性函数&#xff0c;满足质数点是多项式&#xff0c;直接 min_25 了&#xff0c;由于单次求解&#xff0c;所以使用递归的 min_25 会较快。 #include <bits/stdc.h>using namespace std;const int N 1e5 10;int prime[N], a[N], id1[N],…

迫于误解压力,RMS从自由软件基金会与MIT离职

自由软件基金会官网显示&#xff0c;基金会创始人兼主席、自由软件运动发起人 Richard M. Stallman&#xff08;RMS&#xff09;辞去主席职务并辞去董事会职务。而另一边&#xff0c;stallman.org 邮件列表显示&#xff0c;RMS 已经从麻省理工学院&#xff08;MIT&#xff09;计…

F - Colorful Tree(LCA,树上差分,离线处理)

F - Colorful Tree 给定一棵树&#xff0c;边有边权&#xff0c;且每条边有一个颜色&#xff0c;有mmm次操作&#xff0c; 每次给定x,y,u,vx, y, u, vx,y,u,v&#xff0c;如果把颜色为xxx的边&#xff0c;边权修改为yyy&#xff0c;求u,vu, vu,v两点的距离&#xff0c;考虑 …

让人迷茫的三十岁!从专业技能、行业知识和软实力谈一下!

作者&#xff1a;邹溪源&#xff0c;长沙资深互联网从业者&#xff0c;架构师社区合伙人&#xff01;我今年三十岁&#xff0c;我很迷茫&#xff0c;不知道未来该选择什么发展方向。这是我无意中在社区微信群中看到的一位年轻的开发者说的话&#xff0c;之前他也经常会在技术群…

D. Steps to One(概率DP,莫比乌斯反演)

D. Steps to One 设f[i]f[i]f[i]为gcd⁡\gcdgcd为iii&#xff0c;还需要多少个数&#xff0c;那么有f[i]1∑j1mf[gcd⁡(i,j)]mf[i] 1 \frac{\sum\limits_{j 1} ^{m} f[\gcd(i, j)]}{m}f[i]1mj1∑m​f[gcd(i,j)]​&#xff0c; f[1]0f[1] 0f[1]0&#xff0c;考虑化简∑j1mf…

误用.Net Redis客户端工具CSRedisCore,自己挖坑自己填

前导  上次Redis MQ分布式改造完成之后&#xff0c; 编排的容器稳定运行了一个多月&#xff0c;昨天突然收到ETL端同事通知&#xff0c;没有采集到解析日志了。赶紧进服务器看了一下&#xff0c;用于数据接收的receiver容器挂掉了&#xff0c; 尝试docker container start [c…

Java——类加载机制

** 一、什么是类的加载 ** 类的加载指的是将类的.class文件中的二进制数据读入到内存中&#xff0c;将其放在运行时数据区的方法区内&#xff0c;然后在堆区创建一个java.lang.Class对象&#xff0c;用来封装类在方法区内的数据结构。类的加载的最终产品是位于堆区中的Class…

.NET中国峰会议题征集

月初做的调查《》&#xff0c;参与人数576人&#xff0c;愿意参与分享.NET Core经验的142人&#xff0c;今天发起分会场主题演讲和闪电演讲议题.2014年微软组织成立.NET基金会&#xff0c;微软在成为主要的开源参与者的道路上又前进了一步。2014年以来已经有众多知名公司加入.N…