Memcached

本文来自 58沈剑:https://mp.weixin.qq.com/s/zh9fq_e2BgdIeR8RKtY6Sg

memcache是互联网分层架构中,使用最多的的KV缓存。面试的过程中,memcache相关的问题几乎是必问的,关于memcache的面试提问,你能回答到哪一个层次呢?
画外音:很可能关乎,你拿到offer的薪酬档位。

1、第一类问题:知道不知道

这一类问题,考察用没用过,知不知道,相对比较好回答。

关于memcache一些基础特性,使用过的小伙伴基本都能回答出来:

  1. mc的核心职能是KV内存管理,value存储最大为1M,它不支持复杂数据结构(哈希、列表、集合、有序集合等);
  2. mc不支持持久化;
  3. mc支持key过期;
  4. mc持续运行很少会出现内存碎片,速度不会随着服务运行时间降低;
  5. mc使用非阻塞IO复用网络模型,使用监听线程/工作线程的多线程模型;

面对这类封闭性的问题,一定要斩钉截铁,毫无犹豫的给出回答。

2、第二类问题:为什么(why),什么(what)

这一类问题,考察对于一个工具,只停留在使用层面,还是有原理性的思考。

2.1 memcache为什么不支持复杂数据结构?为什么不支持持久化?

业务决定技术方案,mc的诞生,以“以服务的方式,而不是库的方式管理KV内存”为设计目标,它颠覆的是,KV内存管理组件库,复杂数据结构与持久化并不是它的初衷。

当然,用“颠覆”这个词未必不合适,库和服务各有使用场景,只是在分布式的环境下,服务的使用范围更广。设计目标,诞生背景很重要,这一定程度上决定了实现方案,就如redis的出现,是为了有一个更好用,更多功能的缓存服务。
画外音:我很喜欢问这个问题,大部分候选人面对这个没有标准答案的问题,状态可能是蒙圈。

2.2 memcache是用什么技术实现key过期的?

懒淘汰(lazy expiration)。(详见文末)

2.3 memcache为什么能保证运行性能,且很少会出现内存碎片?

提前分配内存。(详见文末)

2.4 memcache为什么要使用非阻塞IO复用网络模型,使用监听线程/工作线程的多线程模型,有什么优缺点?

目的是提高吞吐量。
多线程能够充分的利用多核,但会带来一些锁冲突。

面对这类半开放的问题,有些并没有标准答案,一定要回答出自己的思考和见解。

3、第三类问题:怎么做(how) | 文本刚开始

这一类问题,探测候选人理解得有多透,掌握得有多细,对技术有多刨根究底。
画外音:所谓“好奇心”,真的很重要,只想要“一份工作”的技术人很难有这种好奇心。

3.1 memcache是什么实现内存管理,以减小内存碎片,是怎么实现分配内存的?

开讲之前,先解释几个非常重要的概念:
chunk:它是将内存分配给用户使用的最小单元。
item:用户要存储的数据,包含key和value,最终都存储在chunk里。
slab:它会管理一个固定chunk size的若干个chunk,而mc的内存管理,由若干个slab组成。

画外音:为了避免复杂性,本文先不引入page的概念了。

在这里插入图片描述
如上图所示,一系列slab,分别管理128B,256B,512B…的chunk内存单元。

将上图中管理128B的slab0放大:

在这里插入图片描述
能够发现slab中的一些核心数据结构是:

  • chunk_size:该slab管理的是128B的chunk
  • free_chunk_list:用于快速找到空闲的chunk
  • chunk[]:已经预分配好,用于存放用户item数据的实际chunk空间

画外音:其实还有lru_list。

假如用户要存储一个100B的item,是如何找到对应的可用chunk的呢?

在这里插入图片描述
会从最接近item大小的slab的chunk[]中,通过free_chunk_list快速找到对应的chunk,如上图所示,与item大小最接近的chunk是128B。

为什么不会出现内存碎片呢?

在这里插入图片描述
拿到一个128B的chunk,去存储一个100B的item,余下的28B不会再被其他的item所使用,即:实际上浪费了存储空间,来减少内存碎片,保证访问的速度。
画外音:理论上,内存碎片几乎不存在。

memcache通过slab,chunk,free_chunk_list来快速分配内存,存储用户的item,那它又是如何快速实现key的查找的呢?
没有什么特别算法:
在这里插入图片描述

  • 通过hash表实现快速查找
  • 通过链表来解决冲突

用最朴素的方式,实现key的快速查找。

随着item的个数不断增多,hash冲突越来越大,hash表如何保证查询效率呢?
当item总数达到hash表长度的 1.5倍 时,hash表会动态扩容,rehash将数据重新分布,以保证查找效率不会不断降低。

扩展hash表之后,同一个key在新旧hash表内的位置会发生变化,如何保证数据的一致性,以及如何保证迁移过程服务的可用性呢(肯定不能加一把大锁,迁移完成数据,再重新服务吧)?

哈希表扩展,数据迁移是一个耗时的操作,会有一个专门的线程来实施,为了避免大锁,采用的是“分段迁移”的策略。

当item数量达到阈值时,迁移线程会分段迁移,对hash表中的一部分桶进行加锁,迁移数据,解锁:

  • 一来,保证不会有长时间的阻塞,影响服务的可用性
  • 二来,保证item不会在新旧hash表里不一致

新的问题来了,对于已经存在与旧hash表中的item,可以通过上述方式迁移,那么在item迁移的过程中,如果有新的item插入,是应该插入旧hash表还是新hash表呢?
memcache的做法是,判断旧hash表中,item应该插入的桶,是否已经迁移至新表中:

  • 如果已经迁移,则item直接插入新hash表
  • 如果还没有被迁移,则直接插入旧hash表,未来等待迁移线程来迁移至新hash表

为什么要这么做呢,不能直接插入新hash表吗?
memcache没有给出官方的解释,楼主揣测,这种方法能够保证一个桶内的数据,只在一个hash表中(要么新表,要么旧表),任何场景下都不会出现,旧表新表查询两次,以提升查询速度。

memcache是怎么实现key过期的,**懒淘汰(lazy expiration)**具体是怎么玩的?

实现“超时”和“过期”,最常见的两种方法是:

  • 启动一个超时线程,对所有item进行扫描,如果发现超时,则进行超时回调处理
  • 每个item设定一个超时信号通知,通知触发超时回调处理

这两种方法,都需要有额外的资源消耗。

mc的查询业务非常简单,只会返回cache hit与cache miss两种结果,这种场景下,非常适合使用懒淘汰的方式。

懒淘汰的核心是:

  • item不会被主动淘汰,即没有超时线程,也没有信号通知来主动检查
  • item每次会查询(get)时,检查一下时间戳,如果已经过期,被动淘汰,并返回cache miss

举个例子,假如set了一个key,有效期100s:

  • 在第50s的时候,有用户查询(get)了这个key,判断未过期,返回对应的value值
  • 在第200s的时候,又有用户查询(get)了这个key,判断已过期,将item所在的chunk释放,返回cache miss

这种方式的实现代价很小,消耗资源非常低:

  • 在item里,加入一个过期时间属性
  • 在get时,加入一个时间判断

内存总是有限的,chunk数量有限的情况下,能够存储的item个数是有限的,假如chunk被用完了,该怎么办?

仍然是上面的例子,假如128B的chunk都用完了,用户又set了一个100B的item,要不要挤掉已有的item?

要。

这里的启示是:

  • 即使item的有效期设置为“永久”,也可能被淘汰;
  • 如果要做全量数据缓存,一定要仔细评估,cache的内存大小,必须大于,全量数据的总大小,否则很容易采坑;

挤掉哪一个item?怎么挤?
这里涉及LRU淘汰机制。

如果操作系统的内存管理,最常见的淘汰算法是FIFO和LRU:

  • FIFO(first in first out):最先被set的item,最先被淘汰
  • LRU(least recently used):最近最少被使用(get/set)的item,最先被淘汰

使用LRU算法挤掉item,需要增加两个属性:

  • 最近item访问计数
  • 最近item访问时间

并增加一个LRU链表,就能够快速实现。
画外音:所以,管理chunk的每个slab,除了free_chunk_list,还有lru_list。

思路比结论重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/313356.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用FastReport报表工具生成报表PDF文档

在我们开发某个系统的时候,客户总会提出一些特定的报表需求,固定的报表格式符合他们的业务处理需要,也贴合他们的工作场景,因此我们尽可能做出符合他们实际需要的报表,这样我们的系统会得到更好的认同感。本篇随笔介绍…

DXSDK_June10安装错误

今天安装DXSDK_Jun10时(下载地址:http://download.microsoft.com/download/A/E/7/AE743F1F-632B-4809-87A9-AA1BB3458E31/DXSDK_Jun10.exe),出现错误Error Code:s1023 错误原因: 计算机上有安装过更新版的Microsoft Vi…

相交链表

1、题目描述 编写一个程序,找到两个单链表相交的起始节点。 如下面的两个链表: 在节点 c1 开始相交。 示例 1: 输入:intersectVal 8, listA [4,1,8,4,5], listB [5,0,1,8,4,5], skipA 2, skipB 3 输出:Refe…

.NET Core 3.0中IAsyncEnumerableT有什么大不了的?

.NET Core 3.0和C# 8.0最激动人心的特性之一就是IAsyncEnumerable<T>(也就是async流)。但它有什么特别之处呢?我们现在可以用它做哪些以前不可能做到的事&#xff1f;在本文中&#xff0c;我们将了解IAsyncEnumerable<T>要解决哪些挑战&#xff0c;如何在我们自己…

Kullback-Leibler Divergence

本文转自&#xff1a;http://www.cnblogs.com/ywl925/p/3554502.html KL距离&#xff0c;是Kullback-Leibler差异&#xff08;Kullback-Leibler Divergence&#xff09;的简称&#xff0c;也叫做相对熵&#xff08;Relative Entropy&#xff09;。它衡量的是相同事件空间里的两…

合并K个排序链表

题目描述 合并 k 个排序链表&#xff0c;返回合并后的排序链表。请分析和描述算法的复杂度。 示例: 输入: [1->4->5,1->3->4,2->6 ] 输出: 1->1->2->3->4->4->5->6解法 归并排序法 public ListNode mergeKLists(ListNode[] lists) {i…

Shader 坐标转换

转自&#xff1a;http://www.ownself.org/blog/2010/kong-jian-zuo-biao-zhuan-huan.html 这个比较基础了&#xff0c;不过基础最重要&#xff0c;往往应该理解透彻&#xff0c;并且反复复习。 我们知道在3D画面渲染过程中对于模型的计算的一部分被称为Transforming and Ligh…

致所有.Net者和有梦想的朋友们 - 共勉

这篇文章很早就想写的了&#xff0c;主要是人到了一定的年纪&#xff0c;就想唠叨一些看法&#xff0c;认不认可不重要&#xff0c;重要的是生活给予你的酸甜苦辣&#xff0c;你都想一吐为快。 这里主要基于多年来自己的一个行业感受和以及生活感想&#xff0c;唠叨一下工作以及…

ReLU的起源

论文参考&#xff1a;Deep Sparse Rectifier Neural Networks 网页参考&#xff1a;http://www.mamicode.com/info-detail-873243.html 起源&#xff1a;传统激活函数、脑神经元激活频率研究、稀疏激活性 传统Sigmoid系激活函数 传统神经网络中最常用的两个激活函数&…

二叉树的锯齿形层次遍历

1、题目描述 给定一个二叉树&#xff0c;返回其节点值的锯齿形层次遍历。&#xff08;即先从左往右&#xff0c;再从右往左进行下一层遍历&#xff0c;以此类推&#xff0c;层与层之间交替进行&#xff09;。 例如&#xff1a; 给定二叉树 [3,9,20,null,null,15,7], 3/ \9 2…

Asp.NET Core 轻松学-项目目录和文件作用介绍

前言上一章介绍了 Asp.Net Core 的前世今生&#xff0c;并创建了一个控制台项目编译并运行成功&#xff0c;本章的内容介绍 .NETCore 的各种常用命令、Asp.Net Core MVC 项目文件目录等信息&#xff0c;通过对命令的学习和操作&#xff0c;对项目结构的认识&#xff0c;进一步理…

Dubbo 常见服务治理策略

1、Dubbo体系结构 2、Dubbo容错机制 Dubbo集群容错架构图 各节点关系&#xff1a; 这里的Invoker是Provider的一个可调用Service的抽象&#xff0c;Invoker封装了Provider地址及Service接口信息。Directory代表多个Invoker&#xff0c;可以把它看成List&#xff0c;但与Lis…

Python 依赖库

ImportError: No module named cv2 解决方法&#xfeff;&#xfeff;import cv2时会出现这个问题 解决方法&#xff1a;将openCV安装目录里的python文件夹内的cv2.pyd复制到Python安装目录里Lib中site-packages内即可解决. 当然 要注意32位还是64位。 ImportError DLL load …

IT技术人员的35个特点,你占几个?

作者&#xff1a;zollty&#xff0c;资深程序员和架构师&#xff0c;私底下是个爱折腾的技术极客&#xff0c;架构师社区合伙人&#xff01;1、价值观对生活的一般看法&#xff1a;追求简单&#xff0c;安定&#xff0c;可控制的生活&#xff0c;但对家庭生活的责任持消极态度草…

ReentrantLock可重入锁使用及原理

使用场景&#xff1a;https://www.cnblogs.com/XJJD/p/8758713.html 原理实现&#xff1a;https://blog.csdn.net/weixin_39910081/article/details/80147754

LNK2001

转载自 http://bbs.csdn.net/topics/100140880 学习VC&#xff0b;&#xff0b;时经常会遇到链接错误LNK2001&#xff0c;该错误非常讨厌&#xff0c;因为对于 编程者来说&#xff0c;最好改的错误莫过于编译错误&#xff0c;而一般说来发生连接错误时&#xff0c;编译都已通…

asp.net core 腾讯验证码的接入

asp.net core 腾讯验证码的接入Intro之前使用的验证码服务是用的极验验证&#xff0c;而且是比较旧的&#xff0c;好久之前接入的&#xff0c;而且验证码服务依赖 Session&#xff0c;有点不太灵活&#xff0c;后来发现腾讯也有验证码服务&#xff0c;而且支持小程序&#xff0…

Spring boot 启动过程

先Mark&#xff0c; https://www.cnblogs.com/trgl/p/7353782.html https://blog.csdn.net/zl1zl2zl3/article/details/79765725 https://blog.csdn.net/u010811939/article/details/80592461 https://www.jianshu.com/p/dc12081b3598

ffmpeg加环境变量

转自&#xff1a;http://blog.csdn.net/leixiaohua1020/article/details/19016469 FFMPEG是命令行工具&#xff0c;因此使用起来多少还是会有些不方便。在这记录两点方便使用FFMPEG的方法&#xff1a; 1.任何目录下都可以使用FFMPEG 问题描述&#xff1a;需要转码&#xff08;播…

.NET Core 微信公众号小程序6种获取UnionID方法,你知道哪几种?

前言获取UnionID是开发微信公众号/小程序中很有必要的一个环节&#xff0c;特别是针对一个公司拥有多个公众号小程序而推出的机制&#xff0c;实现打通账户一体化&#xff0c;用UnionID来区分多平台的唯一性。官方的解释&#xff1a;如果开发者拥有多个移动应用、网站应用、和公…