【数理知识】求刚体旋转矩阵和平移矩阵,已知 N>=3 个点在前后时刻的坐标,且这 N>=3 点间距离始终不变代表一个刚体

序号内容
1【数理知识】自由度 degree of freedom 及自由度的计算方法
2【数理知识】刚体 rigid body 及刚体的运动
3【数理知识】刚体基本运动,平动,转动
4【数理知识】向量数乘,内积,外积,matlab代码实现
5【数理知识】最小二乘法,从线性回归出发,数值举例并用最小二乘法求解回归模型
6【数理知识】最小二乘法,一般线性情况,矩阵化表示过程,最佳参数的求解公式过程
7【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差
8【数理知识】奇异值分解,从数据的线性变换角度来理解
9【数理知识】旋转矩阵的推导过程,基于向量的旋转来实现,同时解决欧式变换的非线性局限
10【数理知识】已知 N>=3 个点在前后时刻的坐标,求刚体平移矩阵,旋转矩阵,且这 N>=3 点间距离始终不变代表一个刚体

文章目录

  • 1 解决流程
    • 1. 找寻质心(Centroid)
    • 2. 奇异值分解(SVD)
    • 3. 通过协方差矩阵得到旋转矩阵
    • 4. 计算平移矩阵
  • 2 举例验证 1
    • 1. 找寻质心(Centroid)
    • 2. 计算协方差矩阵
    • 3. 奇异值分解
    • 4. 计算平移矩阵
  • Ref

存在有 N ≥ 3 N\ge 3 N3 个点,它们两两之间距离始终不变,这就满足了可代表一个刚体的条件。同时,已知这 N ≥ 3 N\ge 3 N3 个点在前后时刻的坐标,如何求对应刚体的平移矩阵,旋转矩阵?

如下图所示,对应点的颜色相同, R R R 是旋转, t t t 是平移。我们希望找到能将数据集 A A A 中的点对齐到数据集 B B B 的最佳旋转和平移。这种变换有时被称为欧几里得变换(Euclidean)或刚性变换(Rigid transform),因为它保留了形状和大小。这与仿射变换不同,后者包括缩放和剪切。

这个问题尤其出现在三维点云数据注册等任务中,因为这些数据是从三维激光扫描仪或流行的 Kinect 设备等硬件中获取的。

在这里插入图片描述

接下来的描述中,我们为了和图中情况保持一致,我们都假设 N = 3 N = 3 N=3

1 解决流程

旋转和平移的方程式可以表示为如下形式:

R A + t = B \begin{aligned} RA + t = B \end{aligned} RA+t=B

最终目的是求取最合适的 R R R t t t

至于为什么可以这么表示,请参考文章开头所提及到的其他文章。

1. 找寻质心(Centroid)

这一步也比较简单,质心就是 N = 3 N = 3 N=3 个数据点的平均值

Centroid A = 1 3 ∑ k = 1 3 A k Centroid B = 1 3 ∑ k = 1 3 B k \begin{aligned} \text{Centroid}_{A} &= \frac{1}{3} \sum_{k=1}^{3} A_k \\ \text{Centroid}_{B} &= \frac{1}{3} \sum_{k=1}^{3} B_k \end{aligned} CentroidACentroidB=31k=13Ak=31k=13Bk

其中 A k A_k Ak B k B_k Bk 分别表示在数据集 A A A B B B 中第 k k k 个数据点的坐标。


2. 奇异值分解(SVD)

有几种方法可以找到点之间的最佳旋转。最简单的方法是使用奇异值分解(SVD),因为许多编程语言(Matlab、Octave、使用 LAPACK 的 C 语言、使用 OpenCV 的 C++ 语言…)都可以使用这个函数。SVD 就像线性代数中的一根神奇魔杖,可以解决各种数值问题。这里不会详细介绍它的工作原理,而会介绍如何使用它。你只需要知道,SVD 可以将一个矩阵(称作 E E E)分解/因式分解为另外 3 个矩阵,即

[ U , S , V ] = SVD ( E ) E = U S V T \begin{aligned} [U, S, V] &= \text{SVD} (E) \\ E &= U S V^\text{T} \end{aligned} [U,S,V]E=SVD(E)=USVT

如果 E E E 是方阵,那么 U 、 S U、S US V V V 的大小也相同。

3. 通过协方差矩阵得到旋转矩阵

要找到最佳旋转方式,我们首先要重新调整两个数据集的中心,使两个中心点都位于原点,如下图所示。

在这里插入图片描述

这样就去除了平移部分,只剩下旋转部分需要处理。下一步是累加一个矩阵(称为 H H H),然后使用 SVD 求出旋转,如下所示:

H = ( A − Centroid A ) ( B − Centroid B ) T [ U , S , V ] = SVD ( H ) R = V U T \begin{aligned} H &= (A - \text{Centroid}_{A})(B - \text{Centroid}_{B})^\text{T} \\ [U, S, V] &= \text{SVD} (H) \\ R &= V U^\text{T} \end{aligned} H[U,S,V]R=(ACentroidA)(BCentroidB)T=SVD(H)=VUT

其中, H H H 是我们熟悉的协方差矩阵。 A − Centroid A A - \text{Centroid}_{A} ACentroidA 是用 A A A 减去 Centroid A \text{Centroid}_{A} CentroidA 中的每一列的操作。

需要注意的一点是,要正确计算 H H H。它最终应该是一个 3 × 3 3 \times 3 3×3 矩阵,而不是一个 N × N N \times N N×N 矩阵(这里 N N N 是指点的数量,而 3 3 3 是指数据的坐标 [ x , y , z ] [x,y,z] [x,y,z] 维度是 3 3 3)。注意转置符号。它是在两个矩阵之间进行乘法运算,这两个矩阵的实际维数分别是 3 × N 3 \times N 3×N N × 3 N \times 3 N×3。乘法的顺序也很重要,如果换一种方法,就会变成是从 B B B A A A 的旋转。

4. 计算平移矩阵

得到旋转矩阵 R R R 后,平移矩阵 t t t 也就变得简单了。把质心代入开篇咱们提到的方程,那么有

R A + t = B R × Centroid A + t = Centroid B t = Centroid B − R × Centroid A \begin{aligned} RA + t &= B \\ R \times \text{Centroid}_A + t &= \text{Centroid}_B \\ t &= \text{Centroid}_B - R \times \text{Centroid}_A \end{aligned} RA+tR×CentroidA+tt=B=CentroidB=CentroidBR×CentroidA


2 举例验证 1

假设有 3 3 3 个相对位置保持不变的点,已知它们在数据集合 A A A 和数据集合 B B B 中的位置,然后计算旋转矩阵 R R R 和平动矩阵 t t t

在数据集合 A A A 中:
1 1 1 的位置为: A 1 = ( 1 , 2 , 3 ) A_1 = (1, 2, 3) A1=(1,2,3)
2 2 2 的位置为: A 2 = ( 4 , 5 , 6 ) A_2 = (4, 5, 6) A2=(4,5,6)
3 3 3 的位置为: A 3 = ( 7 , 8 , 9 ) A_3 = (7, 8, 9) A3=(7,8,9)

在数据集合 B B B 中:
1 1 1 的位置为: B 1 = ( 2 , 3 , 4 ) B_1 = (2, 3, 4) B1=(2,3,4)
2 2 2 的位置为: B 2 = ( 5 , 6 , 7 ) B_2 = (5, 6, 7) B2=(5,6,7)
3 3 3 的位置为: B 3 = ( 8 , 9 , 10 ) B_3 = (8, 9, 10) B3=(8,9,10)

计算思路为:

  • 先计算平移:通过求取这些点在两个时刻的质心位置,然后求差来得到平移矩阵

1. 找寻质心(Centroid)

这一步也比较简单,直接代入样本数据

Centroid A = ( 1 + 4 + 7 , 2 + 5 + 8 , 3 + 6 + 9 ) 3 = ( 1 + 4 + 7 3 , 2 + 5 + 8 3 , 3 + 6 + 9 3 ) = ( 4 , 5 , 6 ) Centroid B = ( 2 + 5 + 8 , 3 + 6 + 9 , 4 + 7 + 10 ) 3 = ( 2 + 5 + 8 3 , 3 + 6 + 9 3 , 4 + 7 + 10 3 ) = ( 5 , 6 , 7 ) \begin{aligned} \text{Centroid}_{A} &= \frac{(1+4+7, 2+5+8, 3+6+9)}{3} = (\frac{1 + 4 + 7}{3}, \frac{2 + 5 + 8}{3}, \frac{3 + 6 + 9}{3}) = (4, 5, 6) \\ \text{Centroid}_{B} &= \frac{(2+5+8, 3+6+9, 4+7+10)}{3} = (\frac{2 + 5 + 8}{3}, \frac{3 + 6 + 9}{3}, \frac{4 + 7 + 10}{3}) = (5, 6, 7) \end{aligned} CentroidACentroidB=3(1+4+7,2+5+8,3+6+9)=(31+4+7,32+5+8,33+6+9)=(4,5,6)=3(2+5+8,3+6+9,4+7+10)=(32+5+8,33+6+9,34+7+10)=(5,6,7)

2. 计算协方差矩阵

根据公式

Cov ( X , Y ) i j = ∑ k n = 3 ( x k i − x ˉ i ) ( y k j − y ˉ i ) n − 1 \begin{aligned} \text{Cov} (X,Y)_{ij} &= \frac{\sum_k^{n=3} (x_{ki} - \bar{x}_i)(y_{kj} - \bar{y}_i)}{n-1} \end{aligned} Cov(X,Y)ij=n1kn=3(xkixˉi)(ykjyˉi)

可以得到协方差矩阵

Cov ( X , Y ) = [ 3 3 3 3 3 3 3 3 3 ] \begin{aligned} \text{Cov} (X,Y) &= \left[\begin{matrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \\ \end{matrix}\right] \end{aligned} Cov(X,Y)= 333333333

关于协方差矩阵的原理和求解方法,可参考文章:【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差。

3. 奇异值分解

可以直接使用 Matlab 进行奇异值分解,可以得到

U = [ − 0.5774 0.8165 − 0.0000 − 0.5774 − 0.4082 − 0.7071 − 0.5774 − 0.4082 0.7071 ] , S = [ 9 0 0 0 0 0 0 0 0 ] , V = [ − 0.5774 0.8165 0 − 0.5774 − 0.4082 − 0.7071 − 0.5774 − 0.4082 0.7071 ] U = \left[\begin{matrix} -0.5774 & 0.8165 & -0.0000 \\ -0.5774 & -0.4082 & -0.7071 \\ -0.5774 & -0.4082 & 0.7071 \\ \end{matrix}\right], S = \left[\begin{matrix} 9 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix}\right], V = \left[\begin{matrix} -0.5774 & 0.8165 & 0 \\ -0.5774 & -0.4082 & -0.7071 \\ -0.5774 & -0.4082 & 0.7071 \\ \end{matrix}\right] U= 0.57740.57740.57740.81650.40820.40820.00000.70710.7071 ,S= 900000000 ,V= 0.57740.57740.57740.81650.40820.408200.70710.7071

R = V U T = [ 1 0 0 0 1 0 0 0 1 ] R = V U^\text{T} = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] R=VUT= 100010001

至此得到了旋转矩阵。

4. 计算平移矩阵

t = Centroid B − R × Centroid A = ( 1 , 1 , 1 ) \begin{aligned} t &= \text{Centroid}_B - R \times \text{Centroid}_A &= (1, 1, 1) \end{aligned} t=CentroidBR×CentroidA=(1,1,1)


Ref

  1. FINDING OPTIMAL ROTATION AND TRANSLATION BETWEEN CORRESPONDING 3D POINTS
  2. 从3组对应点中求得最佳的旋转和平移变换

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/31239.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

轻松预约,尽享美食,详解餐厅预约小程序的设计与实现

随着智能手机的普及和人们生活水平的提高,餐厅预约已经成为人们日常生活中的一部分。为了更好地满足人们的需求,许多餐厅开始使用小程序来提供更方便快捷的预约服务。本文将介绍如何制作一款餐厅预约小程序的详细步骤。 1. 进入乔拓云网后台,…

uni-app微信小程序开发自定义select下拉多选内容篇

分享-2023年资深前端进阶:前端登顶之巅-最全面的前端知识点梳理总结 *分享一个使用比较久的🪜 技术框架公司的选型:uni-app uni-ui vue3 vite4 ts 需求分析:微信小程序-uni-ui内容 1、创建一个自定义的下拉,支持多…

OSPF无法建立领居的原因有哪些(第三十五课)

1 配置OSPF 1.1 思路 1,配置IP地址 2,配置OSPF 配置进程号 route-id进入区域宣告网段 配置IP地址 R1路由表 ------------------------------------------------------------------------------ Routing Tables: Public Destinations : 10 …

《人脸识别技术应用安全管理规定(征求意见稿)》,需要关注三个焦点

目录 严防人脸信息采集与滥用 规范人脸识别信息的处理 保障人脸识别技术的安全 人脸识别主要有三类风险 近日,国家互联网信息办公室发布《人脸识别技术应用安全管理规定(试行)(征求意见稿)》公开征求意见的通知。 …

Python 模块 locust 性能测试

简介 locust 是 Python 的一个开源的负载测试工具,用于测试网络应用程序的性能和可伸缩性。它使用Python编写,并提供了一个简单易用的语法来定义和执行负载测试。locust模块允许用户模拟大量并发用户并观察系统在高负载下的响应情况。 目录 1. 基本用法…

多线程的实现方式Thread、Runnable、Callable

1.并发和并行 并发:在同一时刻,有多个指令在单个CPU上交替执行。 并行:在同一时刻,有多个指令在多个CPU上同时执行 2.多线程的实现方式 2.1 继承Thread类实现方式 2.2 实现Runnable接口的实现方式 2.3 利用Callable接口和Futur…

基于金融行业的软件测试分析

随着银行业务不断增加,业务模式不断复杂化,对我们的银行软件也要求越来越高,产出高质量的产品也非常重要,下面对银行软件测试进行分析总结。 银行软件集中度高,规模庞大,往往是以系统群的方式存在&#xff…

F. Sum and Product - 思维

分析: 题目中的格式有点像韦达定理,就是对于一元二次方程ax^2 bx c 0有 所以可以推出要找的就是两个点,可以直接二分查找存不存在,这题有很多边界问题,有b^2 - 4ac小于0或者等于0,或者求出来的根在数组中…

【STM32】利用CubeMX对FreeRTOS用按键控制任务

对于FreeRTOS中的操作,最常用的就是创建、删除、暂停和恢复任务。 此次实验目标: 1.创建任务一:LED1每间隔1秒闪烁一次,并通过串口打印 2.创建任务二:LED2每间隔0.5秒闪烁一次,并通过串口打印 3.创建任…

Java算法_ 房子强盗(LeetCode_Hot100)

题目描述:你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表…

【字节跳动青训营】后端笔记整理-1 | Go语言入门指南:基础语法和常用特性解析

**本人是第六届字节跳动青训营(后端组)的成员。本文由博主本人整理自该营的日常学习实践,首发于稀土掘金:🔗Go语言入门指南:基础语法和常用特性解析 | 青训营 本文主要梳理自第六届字节跳动青训营&#xff…

【对于一维信号的匹配】对一个一维(时间)信号y使用自定义基B执行匹配追踪(MP)研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

C++——关于命名空间

写c项目时,大家常用到的一句话就是: using namespace std; 怎么具体解析这句话呢? 命名冲突: 在c语言中,我们有变量的命名规范,如果一个变量名或者函数名和某个库里面自带的库函数或者某个关键字重名&…

python优雅地爬虫

申明:仅用作学习用途,不提供任何的商业价值。 背景 我需要获得新闻,然后tts,在每天上班的路上可以听一下。具体的方案后期我也会做一次分享。先看我喜欢的万能的老路:获得html内容-> python的工具库解析&#xff0…

Multimap用法详解

Multimap Multimap 是 Google 的 Guava 库为 Java 引入的一种新集合类型&#xff0c;它允许将多个值存储在单个键下。它被设计为一种替代 Map<K, List> 或 Map<K, Set>&#xff08;JDK 标准集合框架&#xff09;的方案。 Multimap<K, V> 扩展了 AbstractMul…

0基础学C#笔记09:希尔排序法

文章目录 前言一、希尔排序的思想二、使用步骤总结 前言 希尔排序可以说是插入排序的一种变种。无论是插入排序还是冒泡排序&#xff0c;如果数组的最大值刚好是在第一位&#xff0c;要将它挪到正确的位置就需要 n - 1 次移动。也就是说&#xff0c;原数组的一个元素如果距离它…

LeetCode--HOT100题(26)

目录 题目描述&#xff1a;142. 环形链表 II&#xff08;中等&#xff09;题目接口解题思路代码 PS: 题目描述&#xff1a;142. 环形链表 II&#xff08;中等&#xff09; 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返…

Vue--》打造个性化医疗服务的医院预约系统(五)

今天开始使用 vue3 + ts 搭建一个医院预约系统的前台页面,因为文章会将项目的每一个地方代码的书写都会讲解到,所以本项目会分成好几篇文章进行讲解,我会在最后一篇文章中会将项目代码开源到我的GithHub上,大家可以自行去进行下载运行,希望本文章对有帮助的朋友们能多多关…

stm32项目(8)——基于stm32的智能家居设计

目录 一.功能设计 二.演示视频 三.硬件选择 1.单片机 2.红外遥控 3.红外探测模块 4.光敏电阻模块 5.温湿度检测模块 6.风扇模块 7.舵机 8.WIFI模块 9.LED和蜂鸣器 10.火焰传感器 11.气体传感器 四.程序设计 1.连线方式 2.注意事项 3.主程序代码 五.课题意义…