【对于一维信号的匹配】对一个一维(时间)信号y使用自定义基B执行匹配追踪(MP)研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

对一个一维(时间)信号y使用自定义基B执行匹配追踪(MP)。

匹配追踪(Mallat和Zhang 1993)是一种贪婪算法,用于通过字典元素D(y〜Dw)的加权和(w)来获取信号y的稀疏表示。稀疏表示意味着大多数元素等于0(nnz(w) << length(y))。这种稀疏表示在许多不同的情况下都很有用:用于获取时频谱图,降噪信号,压缩信号等等。

对于时间信号,自然地使用字典元素D,由位于每个可能的时间点上的基本元素B组成。在这种情况下,权重形成一个高度过完备的字典中的卷积或平移不变的稀疏编码形式。

对于一维信号的匹配追踪(Matching Pursuit, MP)是一种研究方法,用于对一维(时间)信号进行分析和表示。该方法使用自定义基B来执行匹配追踪算法,以获得信号y的稀疏表示。

匹配追踪是一种贪婪算法,旨在通过将信号表示为字典元素的加权和来获得其稀疏表示。稀疏表示意味着信号的大部分元素都是零,只有少数非零元素。这种表示方法在许多领域都有广泛的应用,例如时频谱图的生成、信号降噪和信号压缩等。

对于一维信号,选择合适的基B是非常重要的。基B通常由基本元素组成,这些元素在不同的时间点上进行平移。通过使用这样的基础元素,可以构建一个高度过完备的字典,从而实现对信号的卷积或平移不变的稀疏编码。

通过对一维信号进行匹配追踪研究,我们可以更好地理解信号的特征和结构,从而为信号处理和分析提供更多的工具和方法。

📚2 运行结果

 部分代码:

%% Same, but this time only allow positive weights
%Express gong signal as a sparse sum of Gabors
[ws2,r2] = temporalMP(sig.y,gabors,true,5000);
%%
subplot(3,1,1);
plot(gabors);
title('Basis');
subplot(3,1,2);
plot([sig.y,r2]);
legend('signal','approximation');
subplot(3,1,3);
%the convolution here is to make the spikes visible
imagesc(conv2(ws2,exp(-rg.^2/2/20^2),'same')');
ylabel('increasing time ->');
ylabel('increasing frequency ->');
title(sprintf('weights (%d non-zero weights)',nnz(ws(:))));

%%
%listen to the original sound and its approximation
sound(sig.y,sig.Fs);

%%
sound(r2,sig.Fs);

%% Same, but this time add a deadzone of 3 samples around basis functions
[ws2,r2] = temporalMP(sig.y,gabors,true,5000,0,3);
%%
subplot(3,1,1);
plot(gabors);
title('Basis');
subplot(3,1,2);
plot([sig.y,r2]);
legend('signal','approximation');
subplot(3,1,3);
%the convolution here is to make the spikes visible
imagesc(conv2(ws2,exp(-rg.^2/2/20^2),'same')');
ylabel('increasing time ->');
ylabel('increasing frequency ->');
title(sprintf('weights (%d non-zero weights)',nnz(ws(:))));

%%
%Demonstration of deadzone
[t,~] = find(ws2~=0);
min(diff(sort(t)))

%Should be 3

%%
%listen to the original sound and its approximation
sound(sig.y,sig.Fs);

%%
sound(r2,sig.Fs);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张刘刚.基于匹配追踪(MP)算法的信号自适应分解研究及其应用[D].中南大学,2011.DOI:CNKI:CDMD:2.2010.190196.

[2]彭文杰,张晓玲.基于门限正交匹配追踪(TOMP)的线阵SAR三维成像方法[J].新型工业化, 2013(12):8.DOI:10.3969/j.issn.2095-6649.2013.12.008.

[3]秦晓伟,郭建中.匹配追踪算法(MP)在超声成像中的研究[C]//西安-上海市声学学会声学学术会议.2011.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/31222.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【设计模式】-装饰器模式

Java 设计模式之装饰器模式 前言 在软件开发中&#xff0c;经常有需求对已有的对象进行功能的扩展&#xff0c;但是传统的继承方式会导致类的数量快速增多&#xff0c;且难以维护。为了解决这个问题&#xff0c;装饰器模式应运而生。 装饰器模式是一种结构型设计模式&#xff…

C++——关于命名空间

写c项目时&#xff0c;大家常用到的一句话就是&#xff1a; using namespace std; 怎么具体解析这句话呢&#xff1f; 命名冲突&#xff1a; 在c语言中&#xff0c;我们有变量的命名规范&#xff0c;如果一个变量名或者函数名和某个库里面自带的库函数或者某个关键字重名&…

深度优先搜索与动态规划|865, 1020, 1254

深度优先搜索|865. 具有所有最深节点的最小子树&#xff0c;1372. 二叉树中的最长交错路径&#xff0c;1631. 最小体力消耗路径 具有所有最深节点的最小子树二叉树中的最长交错路径最小体力消耗路径 具有所有最深节点的最小子树 一开始题没看懂&#xff0c;他这里就是找到最深…

python优雅地爬虫

申明&#xff1a;仅用作学习用途&#xff0c;不提供任何的商业价值。 背景 我需要获得新闻&#xff0c;然后tts&#xff0c;在每天上班的路上可以听一下。具体的方案后期我也会做一次分享。先看我喜欢的万能的老路&#xff1a;获得html内容-> python的工具库解析&#xff0…

Multimap用法详解

Multimap Multimap 是 Google 的 Guava 库为 Java 引入的一种新集合类型&#xff0c;它允许将多个值存储在单个键下。它被设计为一种替代 Map<K, List> 或 Map<K, Set>&#xff08;JDK 标准集合框架&#xff09;的方案。 Multimap<K, V> 扩展了 AbstractMul…

0基础学C#笔记09:希尔排序法

文章目录 前言一、希尔排序的思想二、使用步骤总结 前言 希尔排序可以说是插入排序的一种变种。无论是插入排序还是冒泡排序&#xff0c;如果数组的最大值刚好是在第一位&#xff0c;要将它挪到正确的位置就需要 n - 1 次移动。也就是说&#xff0c;原数组的一个元素如果距离它…

LeetCode--HOT100题(26)

目录 题目描述&#xff1a;142. 环形链表 II&#xff08;中等&#xff09;题目接口解题思路代码 PS: 题目描述&#xff1a;142. 环形链表 II&#xff08;中等&#xff09; 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返…

Vue--》打造个性化医疗服务的医院预约系统(五)

今天开始使用 vue3 + ts 搭建一个医院预约系统的前台页面,因为文章会将项目的每一个地方代码的书写都会讲解到,所以本项目会分成好几篇文章进行讲解,我会在最后一篇文章中会将项目代码开源到我的GithHub上,大家可以自行去进行下载运行,希望本文章对有帮助的朋友们能多多关…

ChatGPT在智能社交网络分析和关系挖掘中的应用如何?

智能社交网络分析和关系挖掘是当今信息时代中的重要研究领域&#xff0c;它们通过运用人工智能、机器学习和数据挖掘技术&#xff0c;从社交网络中提取有价值的信息&#xff0c;洞察用户之间的关系和行为模式。ChatGPT作为一种强大的自然语言处理模型&#xff0c;在智能社交网络…

stm32项目(8)——基于stm32的智能家居设计

目录 一.功能设计 二.演示视频 三.硬件选择 1.单片机 2.红外遥控 3.红外探测模块 4.光敏电阻模块 5.温湿度检测模块 6.风扇模块 7.舵机 8.WIFI模块 9.LED和蜂鸣器 10.火焰传感器 11.气体传感器 四.程序设计 1.连线方式 2.注意事项 3.主程序代码 五.课题意义…

程序漏洞:安全威胁的隐患

在当今数字化时代&#xff0c;计算机程序是现代社会的核心基石。然而&#xff0c;随着技术的进步&#xff0c;程序漏洞也成为了一个不可忽视的问题。程序漏洞可能导致数据泄露、系统崩溃、恶意攻击和经济损失等一系列问题。本文将深入探讨程序漏洞的定义、分类、影响和预防措施…

【Linux】线程的概念以及与进程的区别

目录 背景知识 什么是线程&#xff1f; 进程和线程的区别 线程的优缺点 背景知识 在了解线程前&#xff0c;我们要首先知道&#xff0c;OS是可以做到让进程进行细粒度划分的! 比如我们所说的进程地址空间中的堆区&#xff0c;它在进程PCB中的mm_structz中有一个start和…

openCV图像的读写操作

文章目录 一、数组下标二、指针 void QuickDemo::pixel_visit_demo(cv::Mat &image) {int w image.cols;int h image.rows;int dim image.channels();for (int row 0; row < h; row){for (int col 0; col < w; col){if (dim 1)//灰度图像{int pv image.at<…

re学习(30)攻防世界-hackme(代码复原2)

思路&#xff1a; 1.输出成功&#xff0c;v26不为0,说明关系式&#xff1a;v21((unsigned __int8)v24 ^ v20) →2.在汇编代码第37行&#xff0c;输入v16v20&#xff0c;所以求的值为v20 →3.根据关系式&#xff0c;求的值v20v21^v24 →4.v21在第汇编代码第36行也可以提取出来…

文章二:分支管理策略 - 分支玩转:Git分支管理实战

开始本篇文章之前先推荐一个好用的学习工具&#xff0c;AIRIght&#xff0c;借助于AI助手工具&#xff0c;学习事半功倍。欢迎访问&#xff1a;http://airight.fun 概述 在软件开发中&#xff0c;版本控制是一项至关重要的工作。Git作为目前最受欢迎的分布式版本控制系统&…

【时间格式引发的事故】

时间格式引发的事故 背景实战演示结论 背景 前不久写了一个删除数据接口&#xff0c;条件是根据时间删除时间后面的数据。入参是 时间字符串。后台的时间格式 是 yyyyMMdd。然后当时前端传参数的时候&#xff0c;随意的传了2023-07-31的时间&#xff0c;然后将该表的数据全部删…

servlet三大类HttpSevlet,HttpServletRequest,HttpServletResponse介绍

一、HttpServlet HttpServlet类是一个被继承的方法&#xff0c;可以看做一个专门用来响应http请求的类&#xff0c;这个类的所有方法都是为响应http请求服务的&#xff0c;要对一个某个路径谁知http响应时&#xff0c;需要写一个类来继承HttpServlet类&#xff0c;并重写里面的…

更优雅地调试SwiftUI—借助LLDB

更优雅地调试SwiftUI—借助LLDB 概述 你是否写过这样的代码: struct ContentView: View {@State private var mySize: CGFloat = 15.0var myString: String = "Hi LLDB"var myArray: [Int] = [1, 2, 3]var body: some View {VStack {Text("Hello World"…

【深度学习】多粒度、多尺度、多源融合和多模态融合的区别

多粒度&#xff08;multiresolution&#xff09;和多尺度&#xff08;multiscale&#xff09; 多粒度&#xff08;multiresolution&#xff09;和多尺度&#xff08;multiscale&#xff09;都是指在不同的空间或时间尺度上对数据或信号进行分析和处理。其中 多尺度&#xff1…

ABPVNEXT-微服务框架基础入门

准备工作&#xff1a; 1.登录ABPvNext官网 网址 http://abp.io 2.跳转到商业版的说明文档&#xff0c;目前商业版没有中文&#xff0c;只能使用谷歌浏览器的内置翻译功能了 3.框架的相关环境要求&#xff0c;请自自行查看 适用于 Windows 的Visual Studio 2022 (v17.3) /…