傅里叶变换和拉普拉斯变换的物理解释及区别

傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。


傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。


傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。


我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话 ,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。


傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。


对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。


傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。也就是说,用无数的正弦波,可以合成任何你所需要的信号。


想一想这个问题:给你很多正弦信号,你怎样才能合成你需要的信号呢?答案是要两个条件,一个是每个正弦波的幅度,另一个就是每个正弦波之间的相位差。所以现在应该明白了吧,频域上的相位,就是每个正弦波之间的相位。  

傅里叶变换用于信号的频率域分析,一般我们把电信号描述成时间域的数学模型,而数字信号处理对信号的频率特性更感兴趣,而通过傅立叶变换很容易得到信号的频率域特性。


傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。


拉普拉斯变换,是工程数学中常用的一种积分变换。它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。


引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。


拉普拉斯变换在工程学上的应用:应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。


在数字信号处理中,Z变换是一种非常重要的分析工具。但在通常的应用中,我们往往只需要分析信号或系统的频率响应,也即是说通常只需要进行傅里叶变换即可。那么,为什么还要引进Z变换呢?


Z变换和傅里叶变换之间有存在什么样的关系呢?傅里叶变换的物理意义非常清晰:将通常在时域表示的信号,分解为多个正弦信号的叠加。每个正弦信号用幅度、频率、相位就可以完全表征。傅里叶变换之后的信号通常称为频谱,频谱包括幅度谱和相位谱,分别表示幅度随频率的分布及相位随频率的分布。在自然界,频率是有明确的物理意义的,比如说声音信号,男同胞声音低沉雄浑,这主要是因为男声中低频分量更多;女同胞多高亢清脆,这主要是因为女声中高频分量更多。


对一个信号来说,就包含的信息量来讲,时域信号及其相应的傅里叶变换之后的信号是完全一样的。那傅里叶变换有什么作用呢?因为有的信号主要在时域表现其特性,如电容充放电的过程;而有的信号则主要在频域表现其特性,如机械的振动,人类的语音等。若信号的特征主要在频域表示的话,则相应的时域信号看起来可能杂乱无章,但在频域则解读非常方便。


在实际中,当我们采集到一段信号之后,在没有任何先验信息的情况下,直觉是试图在时域能发现一些特征,如果在时域无所发现的话,很自然地将信号转换到频域再看看能有什么特征。信号的时域描述与频域描述,就像一枚硬币的两面,看起来虽然有所不同,但实际上都是同一个东西。正因为如此,在通常的信号与系统的分析过程中,我们非常关心傅里叶变换。


既然人们只关心信号的频域表示,那么Z变换又是怎么回事呢?要说到Z变换,可能还要先追溯到拉普拉斯变换。拉普拉斯变换是以法国数学家拉普拉斯命名的一种变换方法,主要是针对连续信号的分析。拉普拉斯和傅里叶都是同时代的人,他们所处的时代在法国是处于拿破仑时代,国力鼎盛。在科学上也取代英国成为当时世界的中心,在当时众多的科学大师中,拉普拉斯、拉格朗日、傅里叶就是他们中间最为璀璨的三颗星。傅里叶关于信号可以分解为正弦信号叠加的论文,其评审人即包括拉普拉斯和拉格朗日。


回到正题,傅里叶变换虽然好用,而且物理意义明确,但有一个最大的问题是其存在的条件比较苛刻,比如时域内绝对可积的信号才可能存在傅里叶变换。拉普拉斯变换可以说是推广了这以概念。在自然界,指数信号exp(-x)是衰减最快的信号之一,对信号乘上指数信号之后,很容易满足绝对可积的条件。因此将原始信号乘上指数信号之后一般都能满足傅里叶变换的条件,这种变换就是拉普拉斯变换。这种变换能将微分方程转化为代数方程,在18世纪计算机还远未发明的时候,意义非常重大。


从上面的分析可以看出,傅里叶变换可以看做是拉普拉斯的一种特殊形式,即所乘的指数信号为exp(0)。也即是说拉普拉斯变换是傅里叶变换的推广,是一种更普遍的表达形式。在进行信号与系统的分析过程中,可以先得到拉普拉斯变换这种更普遍的结果,然后再得到傅里叶变换这种特殊的结果。这种由普遍到特殊的解决办法,已经证明在连续信号与系统的分析中能够带来很大的方便。


Z变换可以说是针对离散信号和系统的拉普拉斯变换,由此我们就很容易理解Z变换的重要性,也很容易理解Z变换和傅里叶变换之间的关系。Z变换中的Z平面与拉普拉斯中的S平面存在映射的关系,z=exp(Ts)。在Z变换中,单位圆上的结果即对应离散时间傅里叶变换的结果。


本文来源于CSDN网kevinhg的博客



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/304132.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Teleport 开源堡垒机的使用

公司的服务器可能会存在这样一种情况,具体的应用是部署在一个或多个内网服务器上,然后由一台外网服务器通过代理的方式对外提供服务,例如下图:我们如果需要进入到内网服务器进行操作就必须先要进入外网服务器,然后再远…

python拼图游戏_乐趣无穷的Python课堂

Python world/特慧编/你所认为的.........pythonpython&枯燥、无趣boring“安全”提示走进特慧编走进“python编程课”让我们进入真正的编程世界,培养逻辑数理思维,学习掌握python特色,让你的学习过程不再枯燥、不再无趣~~~下面跟着我的脚…

让 Python 更加充分的使用 Sqlite3

我最近在涉及大量数据处理的项目中频繁使用 sqlite3。我最初的尝试根本不涉及任何数据库,所有的数据都将保存在内存中,包括字典查找、迭代和条件等查询。这很好,但可以放入内存的只有那么多,并且将数据从磁盘重新生成或加载到内存…

techempower之Plaintext上7百万RPS

在Plaintext这项测试中第一阶梯的分隔线基本算是7百万RPS,Beetlex并没有到到这一阶梯停留在69X万RPS处,虽然只差那数万但在排名上让人感觉不爽。Beetlex在很多项测都微微领先aspcore,但在最基础项落下一点点的确让我感觉到不太满意,更希望Bee…

详解全排列算法

简介给定 {1, 2, 3, , , n},其全排列为 n! 个,这是最基础的高中组合数学知识。我们以 n4 为例,其全部排列如下图(以字典序树形式来呈现):我们很容易想到用递归来求出它的所有全排列。仔细观察上图&#xff…

VS2019 调试技巧之附加进程

C# 创建服务并附加到进程进行调试步骤一:在任务栏右键-》》点击任务管理器-》》选择服务,找到启动的进程PID或者WINR 进入cmd命令 输入 netstat -ano | find "进程端口" 找端口步骤二:VS中找到“调试”菜单,选择“…

sql同时向两个表插入数据_SQL入门-数据库和客户端的安装,表的创建和数据插入...

1、如何验证MySQL数据库安装成功按照上图操作打开SQL命令行客户端输入安装MySQL时设置的密码并按enter键,得到下图:如果有显示出来红框里的内容,就表示安装成功。红框里的内容表示的是MySQL数据库版本号。2、如何用客户端(Navicat…

我是怎么进入Oracle这样的大企业的?

导语:人工智能是泡沫么?AI产业的未来将何去何从?机器学习又该怎么学习?AI行业从业者又是怎么看待这个行业的呢?踏入一个行业之前最好对这个行业有个全方位的了解。本文作者饶毅,现就职于甲骨文公司。AI行业…

websocket文档_WebSocket推送 原理扫盲到上手实践

关于服务端推送技术,大家比较熟悉的可能就是轮询,但是轮询只能是由客户端先发起http请求。在HTTP1.1中的keep-alive方式建立的http连接,但是一个Request只能对应一个Response,而且这个Response是被动的,不能主动发起。…

DISCUZ7.2在通达OA2009桌面显示技巧

最近在测试DISCUZ 和通达...猛然间看到,,,可以DISCUZ可以和通达完美结合,禁不住进行了测试.....效果还挺好的...最初效果图如下:感觉挺别扭的,于是将DISCUZ调用代码更改了代码如下:[show1] <table width"100%" > <tr> <td alignleft> <di…

如何在 ASP.Net Core 中使用 Lamar

ASP.Net Core 自带了一个极简的 开箱即用 的依赖注入容器&#xff0c;实际上&#xff0c;你还可以使用第三方的 依赖注入容器 来替代它&#xff0c;依赖注入是一种设计模式&#xff0c;它能够有效的实现对象之间的解耦并有利于提高单元测试和维护性&#xff0c;你可以使用 依赖…

扎克伯格做了26张PPT,员工效率提10倍,已被疯狂传阅!

1、时间常有&#xff0c;时间在于优先。2、时间总会有的&#xff1a;每天只计划 4&#xff5e;5 小时真正的工作。3、当你在状态时&#xff0c;就多干点&#xff1b;不然就好好休息&#xff1a;有时候会连着几天不是工作状态&#xff0c;有时在工作状态时却又能天天忙活 12 小时…

2010南非世界杯32强手绘海报

2010南非世界杯32强手绘海报 2010年南非世界杯已经进入最后的倒计时&#xff0c;近日&#xff0c;ESPN推出了一组以世界杯32强为主题的手绘海报。在这组颇有漫画性质的海报中&#xff0c;32强每支球队的特点都是展现得淋淋尽致&#xff0c;卡卡、梅西、C罗、托雷斯等球星也自然…

鹅厂二面,Nginx回忆录

上周二面鹅厂&#xff0c;面试官问出了“nginx你了解吗&#xff1f;”这样宽泛直白的句式&#xff0c;我一时抓不到重点&#xff0c;一时语噻。下班想了一下&#xff0c;平时潜移默化用到不少nginx的能力&#xff0c;但在面试的时候没有吹成对应的概念。面谈nginx核心能力nginx…

干货|吴恩达Coursera课程教你学习神经网络二!

上一周的课程中讲了神经网络的结构以及正向传播(feed forward)过程&#xff0c;了解了神经网络是如何进行预测的&#xff0c;但是预测的结果怎么和真是结果进行比较以及发现了错误如何修改还没有提及。这一周的课程中&#xff0c;介绍了cost function作为结果比较的标准以及bac…

vue预加载动态生成runtime.js_预渲染 prerender-spa-plugin 避坑指南

预渲染原理在webpack打包结束并生成文件后&#xff08;after-emit hook&#xff09;&#xff0c;会启动一个server模拟网站的运行&#xff0c;用puppeteer&#xff08;google官方的headless 无头浏览器浏览器&#xff09;访问指定的页面route&#xff0c;得到相应的html结构&am…

使用 .NET CLI 构建项目脚手架

前言在微服务场景中&#xff0c;开发人员分配到不同的小组&#xff0c;系统会拆分为很多个微服务&#xff0c;有一点是&#xff0c;每个项目都需要单元测试&#xff0c;接口文档&#xff0c;WebAPI接口等&#xff0c;创建新项目这些都是重复的工作&#xff0c;而且还要保证各个…

.net 垃圾回收机制

尽管在.NET framework下我们并不需要担心内存管理和垃圾回收(Garbage Collection)&#xff0c;但是我们还是应该了解它们&#xff0c;以优化我们的应用程序。同时&#xff0c;还需要具备一些基础的内存管理工作机制的知识&#xff0c;这样能够有助于解释我们日常程序编写中的变…

《自然》杂志:中国人越来越沉迷于对着一个叫“区块链”的东西胡言乱语

起初&#xff0c;《自然》杂志以为在2018年春节前后中国发生了一场瘟疫&#xff0c;但很快就改变了这一看法。除了精神亢奋无法入睡&#xff0c;那里的人们身体还算健康。不过&#xff0c;他们越来越沉迷于对着一个叫“区块链”的东西胡言乱语&#xff0c;根本停不下来。因为教…