之前两篇测试中发现:单点索引查询中PostgreSQL的速度是MongoDB(WiredTiger引擎)的4倍。
http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=20726500&id=4960138
http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=20726500&id=4981629
虽然本人很偏好PG,但也对这个结果表示不能理解。按照常理,纯NoSQL的MongoDB应该比PG快或和PG差不多快才比较合理。
所以,在之前测试的基础上再进行一次深入的挖掘。
之前的0匹配查询,由于执行的时间太短,没有采集到CPU利用率,而且时间值太小,对比的准确性也值得怀疑。
所以,现在构造一个循环的单点索引查询,并在单并发和多并发场景下对比PG和MongoDB的性能。
1. MongoDB(WiredTiger引擎)的测试
单并发测试
循环1万次单点索引查询,平均一次大约返回一条记录。
看看top的资源使用
算下来mongod进程占用CPU 1.6s(8.33*19.3%=1.6)
3并发的测试
前面一直是单并发测试,现在看看3并发的场景(测试机是4核)。
3并发时的top结果
可以注意到几点
1)每个客户端的执行时间和单并发时差不多一样。3个mongo进程和1个mongod进程几乎各占了一个CPU核,没有CPU争用。
2)mongod进程的CPU实际占用时间是8.6*47.5%=4s,是单并发时的2.5倍(接近理论效果的3倍,里面会有测量误差)
3)性能瓶颈还是在客户端
10并发的测试
10并发时,忙碌的进程数超过CPU核心数,会有CPU争用。
10并发时的top结果
1)mongod进程的CPU实际占用时间大约是27*50.5%=13.5s,是单并发时的8.4倍(接近理论效果的10倍,里面会有测量误差)
2)CPU被撑满,客户端消耗的大部分的CPU资源。
循环1万次单点索引查询,平均一次大约返回一条记录。
由于PG太快了,不好收集top信息,改成10万次循环。
看看top结果
算下来postgres进程占用CPU 8.9s(10.9*81.1%=8.9)。也就是说mongod进程的CPU实际占用时间是postgres进程的1.8倍,而不是之前简单测试得出的4倍。
3并发的测试
点击(此处)折叠或打开
top的结果
算下来postgres进程占用CPU 大约28.3s(14*(70%+67%+65%+)=28.3),是单并发时的3.2倍。
10并发的测试
点击(此处)折叠或打开
10并发时的top结果
1)大致算下来postgres进程占用CPU 大约97.5s(39*25%*10=97.5),是单并发时的10.9倍(97.5/8.9)。
2)CPU被撑满,postgres进程占用了大部分的CPU。
从上面的结果可以看出:
1)在多并发场景下,MongoDB和PostgreSQL的服务端进程占用的总CPU时间和并发数基本成正比。说明负载在CPU多核间分担的比较好。
2)多并发时MongoDB在单点索引查询占用的CPU时间大约是PostgreSQL的1.4倍。
3)这个1.4倍的比率基本可以代表了实际场景(高并发,且客户端和服务端不在同一台机器上)下它们的单点索引查询性能差异,而不是之前简单测试显示的4倍。
经过这样严格的比较,我终于可以相信PostgreSQL在单点索引查询上比MongoDB(WiredTiger引擎)快了那么一点点。
结合前两次测试结果,最终的总结如下
1)加载
WiredTiger的性能是PG的3倍(注1,注2)
2)插入
相差不大,WiredTiger小胜(注1,注2)
3)全表扫描(0匹配)
WiredTiger的性能是PG的4倍
4)单点索引扫描
PG的性能是WiredTiger的1.4倍(注1)
5)数据大小
PG的数据大小是WiredTiger的3倍
注1)以服务端进程CPU消耗作为衡量指标的,忽略了MongoDB客户端的高CPU消耗。
注2)仅仅是单并发的测试数据
这个结果虽然和开头那个EnterpriseDB的流传较广的测试结果有很大出入,但PG的NoSQL特性在单机环境下仍然有巨大的优势(即:NoSQL+SQL+ACID)。
http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=20726500&id=4960138
http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=20726500&id=4981629
虽然本人很偏好PG,但也对这个结果表示不能理解。按照常理,纯NoSQL的MongoDB应该比PG快或和PG差不多快才比较合理。
所以,在之前测试的基础上再进行一次深入的挖掘。
之前的0匹配查询,由于执行的时间太短,没有采集到CPU利用率,而且时间值太小,对比的准确性也值得怀疑。
所以,现在构造一个循环的单点索引查询,并在单并发和多并发场景下对比PG和MongoDB的性能。
1. MongoDB(WiredTiger引擎)的测试
单并发测试循环1万次单点索引查询,平均一次大约返回一条记录。
点击(此处)折叠或打开
- -bash-4.1$ cat batchselect_mongo.sh
- for ((i=0;i${1};i++))
- do
- echo "db.json_tables.find({ brand: 'ACME${i}'})"
- done
- -bash-4.1$ sh batchselect_mongo.sh 10000|time -p mongo benchmark >/dev/null
- real 8.53
- user 4.59
- sys 2.62
- -bash-4.1$ sh batchselect_mongo.sh 10000|time -p mongo benchmark|grep ACME|wc
- real 8.33
- user 5.33
- sys 1.51
- 9091 3281851 22061914
看看top的资源使用
点击(此处)折叠或打开
- [root@hanode1 bin]# top
- top - 08:29:13 up 11 days, 11:29, 6 users, load average: 0.09, 0.03, 0.01
- Tasks: 159 total, 2 running, 157 sleeping, 0 stopped, 0 zombie
- Cpu(s): 16.8%us, 1.3%sy, 0.0%ni, 75.6%id, 0.0%wa, 0.0%hi, 6.4%si, 0.0%st
- Mem: 1019320k total, 942260k used, 77060k free, 134736k buffers
- Swap: 2064376k total, 64712k used, 1999664k free, 265524k cached
- PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
- 3951 postgres 20 0 746m 63m 9200 R 85.5 6.4 0:06.97 mongo
- 26391 postgres 20 0 617m 339m 12m S 19.3 34.1 10:01.76 mongod
算下来mongod进程占用CPU 1.6s(8.33*19.3%=1.6)
3并发的测试
前面一直是单并发测试,现在看看3并发的场景(测试机是4核)。
点击(此处)折叠或打开
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [1] 5398
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [2] 5401
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [3] 5412
- -bash-4.1$ real 8.61
- user 6.30
- sys 0.64
- real 8.61
- user 6.37
- sys 0.59
- real 8.49
- user 6.36
- sys 0.62
- [1] Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
- [2]- Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
- [3]+ Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
3并发时的top结果
点击(此处)折叠或打开
- [root@hanode1 bin]# top
- top - 08:42:13 up 11 days, 11:42, 6 users, load average: 1.26, 0.95, 0.39
- Tasks: 166 total, 4 running, 162 sleeping, 0 stopped, 0 zombie
- Cpu(s): 67.4%us, 5.3%sy, 0.0%ni, 25.0%id, 0.0%wa, 0.0%hi, 2.3%si, 0.0%st
- Mem: 1019320k total, 570600k used, 448720k free, 1008k buffers
- Swap: 2064376k total, 136636k used, 1927740k free, 38632k cached
- PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
- 5399 postgres 20 0 746m 63m 9192 R 82.5 6.3 0:05.27 mongo
- 5402 postgres 20 0 744m 61m 9192 R 82.5 6.1 0:05.27 mongo
- 5413 postgres 20 0 744m 61m 9192 R 82.1 6.2 0:04.96 mongo
- 26391 postgres 20 0 625m 266m 3048 S 47.5 26.8 10:27.54 mongod
可以注意到几点
1)每个客户端的执行时间和单并发时差不多一样。3个mongo进程和1个mongod进程几乎各占了一个CPU核,没有CPU争用。
2)mongod进程的CPU实际占用时间是8.6*47.5%=4s,是单并发时的2.5倍(接近理论效果的3倍,里面会有测量误差)
3)性能瓶颈还是在客户端
10并发的测试
10并发时,忙碌的进程数超过CPU核心数,会有CPU争用。
点击(此处)折叠或打开
- -bash-4.1$
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [1] 5156
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [2] 5159
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [3] 5161
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [4] 5163
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [5] 5166
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [6] 5170
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [7] 5172
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [8] 5174
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [9] 5177
- -bash-4.1$ sh batchselect_mongo.sh 10000 |time -p mongo benchmark >/dev/null &
- [10] 5179
- -bash-4.1$
- -bash-4.1$ real 25.15
- user 7.97
- sys 1.06
- real 25.54
- user 7.93
- sys 1.02
- real 26.32
- user 7.94
- sys 1.08
- real 26.63
- user 8.39
- sys 0.93
- real 27.01
- user 8.44
- sys 1.04
- real 28.06
- user 8.52
- sys 1.02
- real 28.16
- user 8.11
- sys 1.24
- real 28.27
- user 8.47
- sys 1.03
- real 28.64
- user 8.23
- sys 1.13
- real 29.14
- user 8.11
- sys 1.12
- [1] Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
- [2] Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
- [3] Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
- [4] Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
- [5] Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
- [6] Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
- [7] Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
- [8] Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
- [9]- Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
- [10]+ Done sh batchselect_mongo.sh 10000 | time -p mongo benchmark > /dev/null
10并发时的top结果
点击(此处)折叠或打开
- [root@hanode1 bin]# top
- top - 08:40:22 up 11 days, 11:40, 6 users, load average: 1.60, 0.40, 0.14
- Tasks: 187 total, 11 running, 176 sleeping, 0 stopped, 0 zombie
- Cpu(s): 73.7%us, 24.9%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 1.5%si, 0.0%st
- Mem: 1019320k total, 969800k used, 49520k free, 77180k buffers
- Swap: 2064376k total, 66948k used, 1997428k free, 36160k cached
- PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
- 26391 postgres 20 0 625m 332m 5220 S 50.5 33.4 10:10.47 mongod
- 5168 postgres 20 0 745m 50m 9200 R 40.5 5.0 0:02.16 mongo
- 5175 postgres 20 0 745m 58m 9192 R 40.5 5.9 0:02.19 mongo
- 5167 postgres 20 0 745m 48m 9192 R 34.9 4.9 0:01.97 mongo
- 5157 postgres 20 0 745m 48m 9192 R 34.6 4.8 0:01.96 mongo
- 5184 postgres 20 0 744m 44m 9192 R 34.6 4.5 0:01.68 mongo
- 5164 postgres 20 0 744m 44m 9192 R 33.6 4.5 0:01.67 mongo
- 5182 postgres 20 0 744m 44m 9192 R 31.2 4.5 0:01.58 mongo
- 5180 postgres 20 0 744m 44m 9192 R 30.9 4.5 0:01.58 mongo
- 5181 postgres 20 0 744m 44m 9192 R 29.2 4.5 0:01.52 mongo
- 5183 postgres 20 0 744m 44m 9192 R 28.6 4.5 0:01.54 mongo
1)mongod进程的CPU实际占用时间大约是27*50.5%=13.5s,是单并发时的8.4倍(接近理论效果的10倍,里面会有测量误差)
2)CPU被撑满,客户端消耗的大部分的CPU资源。
2. PostgreSQL的测试
单并发测试循环1万次单点索引查询,平均一次大约返回一条记录。
点击(此处)折叠或打开
- -bash-4.1$ cat batchselect_pg.sh
- for ((i=0;i
- do
- echo "SELECT data FROM json_tables WHERE data @> '{\"brand\":\"ACME${i}\"}';"
- done
- -bash-4.1$ sh batchselect_pg.sh 10000|time -p psql -qAt benchmark >/dev/null
- real 1.48
- user 0.13
- sys 0.14
由于PG太快了,不好收集top信息,改成10万次循环。
点击(此处)折叠或打开
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null
- real 10.72
- user 0.96
- sys 1.01
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark |wc
- real 10.91
- user 0.61
- sys 1.49
- 9091 3172759 21561900
看看top结果
点击(此处)折叠或打开
- [root@hanode1 bin]# top
- top - 09:18:00 up 11 days, 12:18, 6 users, load average: 0.35, 0.14, 0.05
- Tasks: 166 total, 2 running, 164 sleeping, 0 stopped, 0 zombie
- Cpu(s): 27.5%us, 4.5%sy, 0.0%ni, 67.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
- Mem: 1019320k total, 349168k used, 670152k free, 9200k buffers
- Swap: 2064376k total, 68376k used, 1996000k free, 243836k cached
- PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
- 9042 postgres 20 0 587m 77m 76m R 81.8 7.8 0:04.35 postgres
- 9038 postgres 20 0 103m 1224 1064 S 31.9 0.1 0:01.60 sh
- 9041 postgres 20 0 105m 1204 1016 S 18.6 0.1 0:01.08 psql
3并发的测试
点击(此处)折叠或打开
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [1] 9740
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [2] 9743
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [3] 9746
- -bash-4.1$
- -bash-4.1$
- -bash-4.1$ real 14.15
- user 1.21
- sys 1.03
- real 14.34
- user 1.20
- sys 1.01
- real 14.41
- user 1.23
- sys 1.01
- [1] Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
- [2]- Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
- [3]+ Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
top的结果
点击(此处)折叠或打开
- [root@hanode1 bin]# top
- top - 09:25:01 up 11 days, 12:25, 6 users, load average: 0.97, 0.24, 0.08
- Tasks: 176 total, 4 running, 172 sleeping, 0 stopped, 0 zombie
- Cpu(s): 68.6%us, 13.3%sy, 0.0%ni, 18.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
- Mem: 1019320k total, 354280k used, 665040k free, 9512k buffers
- Swap: 2064376k total, 68376k used, 1996000k free, 243848k cached
- PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
- 9749 postgres 20 0 587m 77m 76m R 70.2 7.8 0:08.37 postgres
- 9750 postgres 20 0 587m 77m 76m R 67.5 7.8 0:08.60 postgres
- 9748 postgres 20 0 587m 77m 76m R 65.8 7.8 0:08.44 postgres
- 9739 postgres 20 0 103m 1224 1064 S 31.9 0.1 0:03.39 sh
- 9745 postgres 20 0 103m 1224 1064 S 28.9 0.1 0:03.35 sh
- 9742 postgres 20 0 103m 1228 1064 S 25.3 0.1 0:03.32 sh
- 9741 postgres 20 0 105m 1200 1016 S 16.3 0.1 0:01.95 psql
- 9744 postgres 20 0 105m 1200 1016 S 15.6 0.1 0:02.01 psql
- 9747 postgres 20 0 105m 1200 1016 S 15.6 0.1 0:01.95 psql
算下来postgres进程占用CPU 大约28.3s(14*(70%+67%+65%+)=28.3),是单并发时的3.2倍。
10并发的测试
点击(此处)折叠或打开
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [1] 10628
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [2] 10631
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [3] 10634
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [4] 10637
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [5] 10639
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [6] 10641
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [7] 10644
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [8] 10646
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [9] 10648
- -bash-4.1$ sh batchselect_pg.sh 100000|time -p psql -qAt benchmark >/dev/null &
- [10] 10651
- -bash-4.1$
- -bash-4.1$
- -bash-4.1$ real 38.35
- user 1.47
- sys 0.85
- real 38.72
- user 1.39
- sys 0.90
- real 38.87
- user 1.45
- sys 0.91
- real 39.13
- user 1.50
- sys 0.82
- real 39.23
- user 1.41
- sys 0.94
- real 39.63
- user 1.42
- sys 0.93
- real 39.75
- user 1.39
- sys 0.90
- real 39.84
- user 1.36
- sys 0.98
- real 40.24
- user 1.42
- sys 0.92
- real 40.58
- user 1.40
- sys 0.93
- [1] Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
- [2] Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
- [3] Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
- [4] Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
- [5] Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
- [6] Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
- [7] Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
- [8] Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
- [9]- Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
- [10]+ Done sh batchselect_pg.sh 100000 | time -p psql -qAt benchmark > /dev/null
10并发时的top结果
点击(此处)折叠或打开
- [root@hanode1 bin]# top
- top - 09:34:12 up 11 days, 12:34, 6 users, load average: 5.21, 1.33, 0.47
- Tasks: 201 total, 12 running, 189 sleeping, 0 stopped, 0 zombie
- Cpu(s): 84.7%us, 14.9%sy, 0.0%ni, 0.3%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st
- Mem: 1019320k total, 370468k used, 648852k free, 9952k buffers
- Swap: 2064376k total, 68376k used, 1996000k free, 243860k cached
- PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
- 10664 postgres 20 0 587m 77m 76m R 26.8 7.8 0:08.77 postgres
- 10660 postgres 20 0 587m 77m 76m R 26.2 7.8 0:08.83 postgres
- 10665 postgres 20 0 587m 77m 76m R 26.2 7.8 0:08.46 postgres
- 10642 postgres 20 0 587m 77m 76m R 25.5 7.8 0:08.48 postgres
- 10656 postgres 20 0 587m 77m 76m R 25.5 7.8 0:08.15 postgres
- 10663 postgres 20 0 587m 77m 76m R 24.8 7.8 0:08.48 postgres
- 10662 postgres 20 0 587m 77m 76m R 23.8 7.8 0:08.73 postgres
- 10635 postgres 20 0 587m 77m 76m R 23.5 7.8 0:09.20 postgres
- 10666 postgres 20 0 587m 77m 76m R 23.5 7.8 0:08.87 postgres
- 10654 postgres 20 0 587m 77m 76m R 22.5 7.8 0:07.94 postgres
- 10636 postgres 20 0 103m 1224 1064 S 9.9 0.1 0:03.15 sh
- 10638 postgres 20 0 103m 1228 1064 S 9.9 0.1 0:03.08 sh
- 10650 postgres 20 0 103m 1228 1064 S 9.6 0.1 0:03.18 sh
- 10627 postgres 20 0 103m 1228 1064 S 9.3 0.1 0:03.00 sh
- 10640 postgres 20 0 103m 1228 1064 R 9.3 0.1 0:02.84 sh
- 10645 postgres 20 0 103m 1224 1064 S 9.3 0.1 0:03.14 sh
- 10630 postgres 20 0 103m 1228 1064 S 8.6 0.1 0:03.22 sh
- 10633 postgres 20 0 103m 1228 1064 S 8.6 0.1 0:02.98 sh
- 10647 postgres 20 0 103m 1228 1064 S 8.6 0.1 0:03.17 sh
- 10643 postgres 20 0 103m 1228 1064 S 8.3 0.1 0:02.82 sh
- 10658 postgres 20 0 105m 1200 1016 S 7.0 0.1 0:02.05 psql
- 10655 postgres 20 0 105m 1200 1016 S 6.6 0.1 0:02.09 psql
- 10629 postgres 20 0 105m 1200 1016 S 6.3 0.1 0:02.02 psql
- 10657 postgres 20 0 105m 1200 1016 S 6.3 0.1 0:01.93 psql
- 10652 postgres 20 0 105m 1204 1016 S 6.0 0.1 0:01.88 psql
- 10649 postgres 20 0 105m 1204 1016 S 5.6 0.1 0:01.84 psql
- 10659 postgres 20 0 105m 1200 1016 S 5.6 0.1 0:01.97 psql
- 10632 postgres 20 0 105m 1204 1016 S 5.3 0.1 0:02.09 psql
- 10653 postgres 20 0 105m 1204 1016 S 5.3 0.1 0:01.96 psql
- 10661 postgres 20 0 105m 1200 1016 S 5.3 0.1 0:02.04 psql
1)大致算下来postgres进程占用CPU 大约97.5s(39*25%*10=97.5),是单并发时的10.9倍(97.5/8.9)。
2)CPU被撑满,postgres进程占用了大部分的CPU。
3.总结
测试结果总结如下从上面的结果可以看出:
1)在多并发场景下,MongoDB和PostgreSQL的服务端进程占用的总CPU时间和并发数基本成正比。说明负载在CPU多核间分担的比较好。
2)多并发时MongoDB在单点索引查询占用的CPU时间大约是PostgreSQL的1.4倍。
3)这个1.4倍的比率基本可以代表了实际场景(高并发,且客户端和服务端不在同一台机器上)下它们的单点索引查询性能差异,而不是之前简单测试显示的4倍。
经过这样严格的比较,我终于可以相信PostgreSQL在单点索引查询上比MongoDB(WiredTiger引擎)快了那么一点点。
结合前两次测试结果,最终的总结如下
1)加载
WiredTiger的性能是PG的3倍(注1,注2)
2)插入
相差不大,WiredTiger小胜(注1,注2)
3)全表扫描(0匹配)
WiredTiger的性能是PG的4倍
4)单点索引扫描
PG的性能是WiredTiger的1.4倍(注1)
5)数据大小
PG的数据大小是WiredTiger的3倍
注1)以服务端进程CPU消耗作为衡量指标的,忽略了MongoDB客户端的高CPU消耗。
注2)仅仅是单并发的测试数据
这个结果虽然和开头那个EnterpriseDB的流传较广的测试结果有很大出入,但PG的NoSQL特性在单机环境下仍然有巨大的优势(即:NoSQL+SQL+ACID)。