详解Python利用random生成一个列表内的随机数
首先,需要导入random模块:
import random
随机取1-33之间的1个随机数,可能重复:
random.choice(range(1,34))
print得到一系列随机数,执行一次得到一个随机数:
print(random.choice(range(1,34)))
随机取1-33之间的6个随机数,可能重复:
random.choices(range(1,34),k=6,weights=range(1,34))
其权重值表示该数或该范围内的数输出概率大,输出结果为列表
随机取1-33之间的6个随机数,不重复:
random.sample(range(1,34),6)
得到一个无序列表
random.uniform(a,b) 生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限
random.randint(a,b) 生成一个指定范围内的整数。其中参数a是下限,参数b是上限
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
时间: 2019-08-18
本文实例讲述了Python随机数用法.分享给大家供大家参考,具体如下: 1. random.seed(int) 给随机数对象一个种子值,用于产生随机序列. 对于同一个种子值的输入,之后产生的随机数序列也一样. 通常是把时间秒数等变化值作为种子值,达到每次运行产生的随机系列都不一样 seed() 省略参数,意味着使用当前系统时间生成随机数 random.seed(10) print random.random() #0.57140259469 random.seed(10) print rando
random.randomrandom.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0 random.uniformrandom.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.如果a > b,则生成的随机数n: a <= n <= b.如果 a
随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等.Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入random模块. import random 下面介绍下Python内置的random模块的几种生成随机数的方法. 1.random.random() 随机生成 0 到 1 之间的浮点数[0.0, 1.0) . print("random: ", random.random()) #rando
random 模块是Python自带的模块,除了生成最简单的随机数以外,还有很多功能. random.random() 用来生成一个0~1之间的随机浮点数,范围[0,10 >>> import random >>> random.random() 0.5038461831828231 random.uniform(a,b) 返回a,b之间的随机浮点数,范围[a,b]或[a,b),取决于四舍五入,a不一定要比b小. >>> random.uniform(
本文我们详细地介绍下两个模块关于生成随机序列的其他使用方法. 随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等.Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入random模块. import random 下面介绍下Python内置的random模块的几种生成随机数的方法. 1.random.random()随机生成 0 到 1 之间的浮点数[0.0, 1.0).注意的是返回的随机数可能会是 0 但
因为概率问题,所以需要测试一下python的随机数分布.到底是平均(均匀)分布,还是正态(高斯)分布. 测试代码如下: #! /usr/bin/env python #coding=utf-8 # ================================= # Describe : 测试random随机数分布 # D&P Author By: 常成功 # Create Date: 2017/10/07 # Modify Date: 2017/10/20 # (C) 2012-2017 A
我们已经在Python运算中看到Python最基本的数学运算功能.此外,math包补充了更多的函数.当然,如果想要更加高级的数学功能,可以考虑选择标准库之外的numpy和scipy项目,它们不但支持数组和矩阵运算,还有丰富的数学和物理方程可供使用. 此外,random包可以用来生成随机数.随机数不仅可以用于数学用途,还经常被嵌入到算法中,用以提高算法效率,并提高程序的安全性. math包 math包主要处理数学相关的运算.math包定义了两个常数: 复制代码 代码如下: math.e # 自
Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0 random.uniform random.uniform的函数原型为:random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.如果a > b,则生成的随机数n: a <= n <= b.如果 a <
本文实例讲述了Python使用random模块生成随机数操作.分享给大家供大家参考,具体如下: 今天在用Python编写一个小程序时,要用到随机数,于是就在网上查了一下关于Python生成各种随机数的方法,现将其总结如下: 此处,利用Python中的random模块生成随机数.因此首先必须导入该模块:import random 一. 随机产生一个元素 import random #生成一个0到1的随机浮点数: 0 <= n < 1.0 print(random.random()) >&g
Selenium的介绍.配置和调用 Selenium(浏览器自动化测试框架) 是一个用于Web应用程序测试的工具.Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.支持的浏览器包括IE(7, 8, 9, 10, 11),Firefox,Safari,Google Chrome,Opera等.这个工具的主要功能包括:测试浏览器的兼容性--测试你的应用程序看是否能够很好得工作在不同浏览器和操作系统之上.测试系统功能--创建回归测试检验软件功能和用户需求.支持自动录制动作和自动生成 .
本文实例讲述了python中urllib模块用法.分享给大家供大家参考.具体分析如下: 一.问题: 近期公司项目的需求是根据客户提供的api,我们定时去获取数据, 之前的方案是用php收集任务存入到redis队列,然后在linux下做一个常驻进程跑某一个php文件, 该php文件就一个无限循环,判断redis队列,有就执行,没有就break. 二.解决方法: 最近刚好学了一下python, python的urllib模块或许比php的curl更快,而且简单. 贴一下代码 复制代码 代码如下: #
本文实例讲述了Python中subprocess模块用法.分享给大家供大家参考.具体如下: 执行命令: >>> subprocess.call(["ls", "-l"]) 0 >>> subprocess.call("exit 1", shell=True) 1 测试调用系统中cmd命令,显示命令执行的结果: x=subprocess.check_output(["echo", "
本文实例讲述了python中argparse模块用法.分享给大家供大家参考.具体分析如下: 平常在写命令行工具的时候,经常会带参数,所以用python中的argparse来实现. # -*- coding: utf-8 -*- import argparse args = "-f hello.txt -n 1 2 3 -x 100 -y b -z a -q hello @args.txt i_am_bar -h".split() # 使用@args.txt要求fromfile_pref
pymysql 模块的使用 一.pymysql的下载和使用 (1)pymysql模块的下载 pip3 install pymysql (2)pymysql的使用 # 实现:使用Python实现用户登录,如果用户存在则登录成功(假设该用户已在数据库中) import pymysql user = input('请输入用户名:') pwd = input('请输入密码:') # 1.连接 conn = pymysql.connect(host='127.0.0.1', port=3306, user
最近在看流畅的python,在看第14章节的itertools模块,对其itertools中的相关函数实现的逻辑的实现 其中在zip_longest(it_obj1, ..., it_objN, fillvalue=None)时,其函数实现的功能和内置zip函数大致相同(实现一一对应), 不过内置的zip函数是已元素最少对象为基准,而zip_longest函数是已元素最多对象为基准,使用fillvalue的值来填充 以下是自己总结此函数的大致实现方法,和官方方法不同: 思路大致如此: 找出元素个
算法优缺点: 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚