被遗忘的数学家!曾提出最接地气的数学定理,可以计算男朋友真不真心的那种......

全世界只有3.14 % 的人关注了

爆炸吧知识

在介绍了业余数学家费马后,听说很多小伙伴还想看看业余的。

这不,小天这次又来介绍业余数学家来了。

险些被遗忘

托马斯.贝叶斯,十八世纪英国的一个长老会的牧师(专业)和数学家(业余)。

贝叶斯画像

约……1702年出生在英国赫特福德郡。

 

为什么贝叶斯的出生时间是“约”呢?

 

原来呀,是记录历史的人把贝叶斯忘记了,根本就没有记录过贝叶斯。

直到1965年,贝叶斯的名字才第一次出现在一本有参考价值的著作《帝国传记词典》上。

 

但1965年啊,都已经过去200多年了!

 

200年后的人在没有记录的情况下怎么可能知道贝叶斯确切的出生日期呢?

 

于是贝叶斯的出生时间就只能是大约的日期了。

 

等到上学后,贝叶斯就开始接受私人教育了。

 

为什么是私人教育呢?

 

原来啊,贝叶斯上学那会儿,正逢当时的英国女王伊丽莎白一世在进行宗教改革

 

而这个改革中有一个非常强硬的规定:新教徒及其子女不准进入公校!

贝叶斯的父亲是英格兰任命的第一批六名新教牧师之一,肯定就是新教徒啊!

 

上不了公校怎么办?

 

贝叶斯当然就只能灰溜溜地在自己父母的安排下接受私人教育,俗称家庭教师进家庭教学。

 

到了1719年,贝叶斯被爱丁堡大学录取,学习逻辑学和神学。

 

打岔一下,是不是有人想问小天:不是说新教徒子女不能进入公校学习吗?那贝叶斯怎么又进了公校?

 

小天当然不会做那样打脸的事!

 

1719年的时候已经取消了这条规定,贝叶斯也就进了爱丁堡大学。

 

毕业后,贝叶斯就成为了父亲的小跟屁虫。

 

1928年,贝叶斯在霍尔本的皮巷长老会教堂里作父亲的助手。

 

1731年时,他写了一篇短文《神性善良,试证上帝与政府的主旨是他的造物的幸福》,此文在英国博物馆有拷贝版。

 

大约在1733年的时候,坦布里奇韦尔斯长老会教堂的牧师约翰.阿彻去世,贝叶斯也就成为了继任者。

 

三年后,约翰・努恩发表了一篇短文《流数学说导论及数学家对分析家作者的缺陷的防御》

 

但与贝叶斯同时代的人总认为这篇短文是贝叶斯用作者名义写的。

 

因为这篇短文像极了贝叶斯的风格:和贝叶斯的各种不同文章的复制本风格一样,而且文章还多次出现他的名字。

 

以至于后来,大不列颠博物馆的目录中这么归属。

 

只是风格相同就怀疑这篇文章是贝叶斯写的?

 

当然不是!还有文中的内容!

 

文中的内容是针对伯克利对微积分的攻击进行辩护。

伯克利是一个出名的哲学家和神学家。1734年他发表文章《The Analyst》批判牛顿的微积分。

 

批判牛顿的微积分?

 

牛顿的支持者们当然不会允许!纷纷进行反击!

 

而恰好,贝叶斯就是牛顿的支持者,极可能也是反击中的一员。

 

风格一样,内容又是反击伯克利的,自然就有人认为这篇文章是贝叶斯写的了。

 

不过后来德摩根(1860年)说,这篇短文是匿名的,根本没有约翰・努恩的名字。

 

这一句话出来,就更让人们相信这篇短文是贝叶斯写的了。

 

但,这只是猜测,还是没有证据。

 

到了1742年,贝叶斯成为了英国皇家学会会员,后来还成为了一名长老会牧师

他一直到 1752年才正式退休,继续生活在坦布里奇韦尔斯。

 

退休后,贝叶斯进行数学研究的时间就更多了。

 

退休后第6年,他就发表了著作《机会的学说概论》,里面的许多术语被沿用至今。

 

贝叶斯定理

1763年,他又发表了《论有关机遇问题的求解》一文,在文中提出了著名的贝叶斯定理。 

其公式是:

P(A|B)=P(B|A)*P(A)/P(B)

 

P为概率,A为假设,B为证据也即是实验的结果或材料。 

P(B|A)是A发生的情况下B发生的概率;P(A|B)是B发生的条件下A发生的概率;P(A)是A发生的概率;P(B)是B发生的概率, P(B)的计算公式为:

P(B)= P(B|A)*P(A)+ P(B|^A)*P(^A) 

需要注意的是:P(B|^A)指的是A不发生时B发生的概率;P(^A)指的是A不发生的概率,且P(^A)=1- P(A)

既然有公式,哪能少得了例子呢? 

小天比较大方,一举就举两个:

 

案例一:

 

假设你在玩一个新游戏,但你不清楚充币对你升级的作用。由于你是新玩这个游戏,对游戏规则也不熟悉,这时候就该贝叶斯定理出场了。

 

P(A)就是充币对升级有作用的概率,你根据以往玩游戏的经验觉得应该是60%

但突然出现了B情况:你发现Q玩家升级了,而且Q还是充过币的人。

这时你就会想了,P(B|A)是充币有用时Q玩家升级的概率,你就可以预估一个P(B|A)的值啊,那就假设它是70%吧。

但你想了想,Q玩家可能是靠挂机或者组队打怪升级了的,充币可能对他的作用不大,这时又来预估 P(B|^A)的值,假设它为50%。 

这时我们来计算一下:

P(A|B)=70%*60%/(60%*70%+40%*50%)=68%

那68%说明什么呢?说明当Q玩家充币升级的情况出现后,你对充币升级的作用的概率判断从60%上升到了68%

但你玩了一段时间后,你发现E玩家充币了,但他没有升级,这时你对P(B|A)有了一个新的预判,认为它是30%,这时就有一个新的P(A|B)。

即是

P(A|B)=30%*68%/(30%*68%+50%*32%)=56%

 

那56%说明什么呢?说明当E玩家充币未升级的情况出现后,你对充币升级的作用的概率判断从68%下降到了56%

如果你还是懵懵懂懂,小天再换一个简单点的案例呗:

 

事件A:学生守信;事件B:学生不交作业

 

假设老师认为学生的守信度为70%,即P(A)=70%。

再假设守信的学生不交作业的概率为20%,即P(B|A)=20%。

继续假设不守信的学生不交作业的概率为50%,即P(B|^A)=50%。

 

老师第一次发现学生没有交作业时,即是B发生时,老师觉得学生的守信度为:

P(A|B)=20%*70%/(20%*70%+50%*30%)=48%

 

48%表示什么?

 

学生在老师那的守信度从70%下降到了48%

 

当学生第二次没有交作业后,P(A|B)的值又变了

 

P(A|B)=20%*48%/(20%*48%+50%*52%)=27%

 

27%表示什么?

 

学生在老师那的守信度又降了!从48%下降到了27%

 

当老师第三次第四次甚至第N次发现学生没有交作业后……

 

学生在老师这就完全没有了守信度!

举例结束,你懂贝叶斯定理了吗?

 

最后的事

不管懂不懂,我们还是得接着介绍贝叶斯啊。

贝叶斯曾在一封信里面论述了渐进级数,还发表在了《皇家学会哲学记录》上。

但在1761年的时候,贝叶斯去世了。

 

作为一个数学家,贝叶斯的数学工作并不多,但却大都是精华。尤其是他把流数和渐进级数说得非常清楚,在他那个世纪也只有他能够做到。

他对统计推理也有贡献:他使用了‘“逆概率”这一概念,并把它当做一个普遍的推理方法提出来。

从他写给约翰.康顿(英国物理学家)的一封信中我们也可以看出他对天文学的贡献。他们在信中讨论了辛普森对天文观测数据误差处理的问题。

当然,贝叶斯最大的贡献还是提出了贝叶斯公式。

在贝叶斯提出贝叶斯公式后,该公式经过200多年发展与完善后还发展成了一套完整的理论和方法!并成为以贝叶斯命名的“贝叶斯学派”。

最重要的是:这一理论还点亮了今天的计算机领域,成了21世纪计算机软件的理论基础!

用该理论最成功的公司就是微软公司,他们用该理论做了Windows XP操作系统。

另外,该理论也是微软公司“以互联网为中心”的NET战略的理论基石。

除了应用于计算机领域,贝叶斯定理还广泛应用于信息传递、医学、生产和侦破案件等方面,几乎涉及了各个领域!

但如果你认为贝叶斯定理只有高大上的一面那你就错了!它也是可以很接地气的。

像小天上面举例的那样:判断充币可不可以升级啊,老师对不交作业同学的信任度啊。

除了小天举例的,还有人用来判断自己的恋人适不适合自己,自己及家人患上流行病的概率等等。

毕竟,数学最终都是服务于我们的生活的。

所以,还不赶紧用?

写在最后

用数学理解世间万物,用理性思维寻找解决问题的新角度。所以,超模君为大家准备了《数学之旅》!

在娱乐的同时,通俗易懂的感受数学之美,做到真正的寓教于乐!你还在等什么?赶紧开启你的数学之旅吧!

《数学之旅 · 闪耀人类的54位数学家》

 数学艺术礼盒

指导价219

新春价139

+1元就送一沓红包

慢一秒,就容易抢不到

点击小程序,即可购买

作者简介:超模君,数学教育与生活自媒体博主,新晋理工科奶爸。出版过《芥子须弥 · 大科学家的小故事》;《数学之旅·闪耀人类的54个数学家》。后续数学文化创意多多,欢迎关注认识!

本文系网易新闻·网易号“各有态度”特色内容

部分资料来源于网络

转载请在公众号中,回复“转载”

超模君每周分享来袭

????????????

“整整600页!国家奥数教头主编教材

扫描上方二维码

回复“600”领取资料全文

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/294343.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android之MVVM框架 - 数据绑定

本教程是跟着 Data Binding Guide 学习过程中得出的一些实践经验,同时修改了官方教程的一些错误,每一个知识点都有对应的源码,争取做到实践与理论相结合。 Data Binding 解决了 Android UI 编程中的一个痛点,官方原生支持 MVVM 模…

再见 Typora,这款 Markdown 编辑器开源又免费!

推荐一个免费开源的 Markdown 编辑器编程导航 致力于推荐优质编程资源 💎项目开源仓库:https://github.com/liyupi/code-nav跪求一个 star ⭐️哈喽大家好!我是编程导航的小编火宝。前段时间 Typora 宣布将升级并开始收费,想必大家…

Android窗口管理服务WindowManagerService的简要介绍和学习计划

在前一个系列文章中,我们从个体的角度来分析了Android应用程序窗口的实现框架。事实上,如果我们从整体的角度来看,Android应用程序窗口的实现要更复杂,因为它们的类型和作用不同,且会相互影响。在Android系统中&#x…

Andorid之为何要用到NDK?

概括来说主要分为以下几种情况: 1. 代码的保护,由于apk的java层代码很容易被反编译,而C/C库反汇难度较大。 2. 在NDK中调用第三方C/C库,因为大部分的开源库都是用C/C代码编写的。 3. 便于移植,用C/C写得库可以方便在其…

日本最惨数学天才!37岁裸辞,房子被政府没收,向全村人乞讨,一家五口只能吃野菜.........

全世界只有3.14 % 的人关注了爆炸吧知识数学是火他是飞蛾多年以后,当冈熙哉站在桥本市的数学家纪念碑前,准会想起父亲请他吃面包片的那个遥远的夜晚。当时,他们一家五口蜗居在邻居施舍租出的小库房里。冈洁家三代同堂在他的回忆中&#xff0c…

3、Eternal框架-控制器

2019独角兽企业重金招聘Python工程师标准>>> 介绍 MVC:Model-View-Controller,包括三类对象,Model模型对象、View视图表示、Controller控制器。在应用MVC方式以前,通常将这三个对象的功能合到了一起,通过分…

java配置JDK

1、将JDK文件拷入电脑并解压缩 根据系统版本选择JDK版本,并将eclipse解压缩 2、配置系统环境变量 右键我的电脑--属性--高级系统设置--环境变量 新建JAVA_HOME如图所示(严格区分大小写) 修改环境变量Path 在变量值一栏的最前面加上%JAVA_HOM…

可怕!原来我们看到的世界地图一直都是“错”的!多年的地理白学了...

▲ 点击查看几乎每个家庭都会有两张地图:一张世界地图,一张中国地图。薄薄的两张纸,蕴藏着让每个人学会“看世界”的磅礴力量。哈佛上一任校长,也是300多年来唯一一位女校长德鲁吉尔平福斯特(Drew Gilpin Faust&#x…

.NET 程序测试 Java 项目 log4j2 是否存在远程代码执行漏洞

最近两天被朋友圈的“Apache Log4j2 远程代码执行漏洞”刷屏了,主要是因为组件存在 Java JNDI 注入漏洞:当程序将用户输入的数据记入日志时,攻击者通过构造特殊请求,来触发 Apache Log4j2 中的远程代码执行漏洞,从而利…

史上最牛的文科生:法学出身,却发明出十进制计算器,折磨无数人的微积分符号,跨界40多个领域惊艳学术圈

全世界只有3.14 % 的人关注了爆炸吧知识“世界上没有完全相同的两片树叶。”想必大家对这句话耳熟能详,但却不知道这名言背后的作者是谁吧?其实,他就是与牛顿争论微积分优先权大战中的大佬:莱布尼茨。博览群书 天赋异禀1646年&…

如何解决secureCRT里面的The remote system refused the connection.

不废话,先爆照 Ubuntu缺省安装了openssh-client,所以在这里就不安装了,如果你的系统没有安装的话,再用apt-get安装上即可。然后确认sshserver是否启动了: ps -e |grep ssh 如果只有ssh-agent那ss

python 带pydev的eclipse无法导入win32api包(或无法导入其他包)

需要重新配置pydev中的python解释器,因为它不会自动更新。 将原先的python.exe先remove掉,再重新new回来,new回来的时候会让你勾选system libs,把你想要更新的勾选上去就可以了。转载于:https://blog.51cto.com/xuewei/1111889

OC之非ARC环境下循环retain问题

观察上述情况,上述就是著名的循环引用问题,对于此类问题,“你包含我,我包含你”,里面相关的对象占用的内存永远回收不了,解决办法很简单,与常规方法不同。正常情况下,我们应在Person…

我的开源故事

| 作者:李扬| 编辑:钱奕| 设计:杨敏| 责编:钱英宇一、前 言我相信我与开源故事的开始并不是第一次用GitHub或者CSDN,而是突如其来的新冠疫情。2020年1月25日,大年初一,范晶晶的一条关于wuhan202…

Spring+EhCache缓存实例(详细讲解+源码下载)

转载注明出处http://blog.csdn.net/u013142781 一、ehcahe的介绍 EhCache 是一个纯Java的进程内缓存框架,具有快速、精干等特点,是Hibernate中默认的CacheProvider。Ehcache是一种广泛使用的开源Java分布式缓存。主要面向通用缓存,Java EE和轻量级容器。…

大型打脸现场!被藐视的少女摇身一变成为“抽象代数之母”,哲学教授只能跪地喊爸爸...

全世界只有3.14 % 的人关注了爆炸吧知识今天小天要为大家介绍一位数学界的女神。在爱因斯坦、帕维尔亚历山德罗夫等人的眼中,她是数学史上最重要的女人,甚至被爱因斯坦称为数学界的雅典娜。她,就是诺特定理的提出者——艾米诺特。艾米诺特上学…

组策略应用之一:映射网络驱动器

在部署文件服务器时,我们经常会用映射网络驱动器的方法访问共享文件,但如果有新员工离职、调岗或更换电脑后,就不得不重新映射网络驱动器,在一定程度上即增加了系统管理员的工作负担,另外在一定程度上也会影响员工的工…

Android JSON原生解析的几种思路,以号码归属地,笑话大全,天气预报为例演示...

Android JSON原生解析的几种思路,以号码归属地,笑话大全,天气预报为例演示 今天项目中要实现一个天气的预览,加载的信息很多,字段也很多,所以理清了一下思路,准备独立出来写一个总结&#xff0c…

C# WPF MVVM开发框架Caliburn.Micro 名称Transformer⑩①

使用名称TransformerNameTransformer是在Caliburn.Micro v1.1中引入的,它是ViewLocator和ViewModelLocator如何将类名映射到其伙伴角色的一个组成部分。虽然您可以覆盖这些服务上的各种函数来替换底层行为,但您的大多数需求都应该通过使用适当的NameTran…

史上最可怜的科学家:出生先天不足,家道中落吃不上饭,追个星丢工作,拜师被冤枉,写书又被烧,最后还被拖工资活活拖死了......

全世界只有3.14 % 的人关注了爆炸吧知识今天,小天来向各位模友介绍一个痴迷偶像正面刚的小迷弟吧。多病的贫家子,鲁莽的小迷弟1571年,开普勒在德国维尔镇呱呱落地了。作为一个善解人意的宝宝(胚胎),开普勒没…