Play with Chain
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
FLIP a b: We first cut down the chain from the ath diamond to the bth diamond. Then reverse the chain and put them back to the original position. For example, if we perform “FLIP 2 6” on the chain: 1 2 6 7 3 4 5 8. The chain will turn out to be: 1 4 3 7 6 2 5 8
He wants to know what the chain looks like after perform m operations. Could you help him?
8 2 CUT 3 5 4 FLIP 2 6 -1 -1
【Sample Output】
1 4 3 7 6 2 5 8
【题意】
给出一列数,然后对整个数列执行两种操作:切下一段插入到另外的位置,或者把其中的一整段整个翻转一下。
求经过一系列操作之后,数列最后的样子。
【分析】
数据范围最高能够到达3e5那么大,因此算法至少要是O(nlogn)复杂度以下才可能达到要求。
考虑采用Splay解决(这样的题目只能用这种动态维护的树结构不是么?)
初始先建树,把1~n加入Splay树。由于数列在后面是要被打乱顺序的,Splay二叉平衡树的性质只有在初始的时候是被保持的,之后是靠size,即每个点在中序遍历中的位置来维护。最后输出数列则只需要中序遍历一遍即可。
切割操作:若要切下a~b段,则把第a-1个结点移到根,把第b+1个结点移到根以下(即跟的右子树),则整个a~b段就落在b+1的左子树上,切出来。插入到c的时候,将c移到根,c+1移到根的右子树,则切出来的插入到c+1的左子树即可
翻转操作:用上面相同的方法把a~b整合到一棵子树上,然后可以参考线段树标记的方法,通过标记来完成访问结点的翻转等操作。
具体可以在纸上模拟一下......
【教训】
教训还是比较惨痛的...卡在这道题上好久了。
首先是输入输出以后要特别注意结尾方式,两个负数结尾还是两个-1结尾
把各种可能出现的不同情况考虑完整
1 /* *********************************************** 2 MYID : Chen Fan 3 LANG : G++ 4 PROG : HDU3487 5 ************************************************ */ 6 7 #include <iostream> 8 #include <cstdio> 9 #include <cstring> 10 #include <algorithm> 11 12 using namespace std; 13 14 #define MAXN 300010 15 16 int sons[MAXN][2]; 17 int father[MAXN],size[MAXN],data[MAXN],list[MAXN]; 18 bool flag[MAXN]; 19 int spt=0,spttail=0; 20 21 void down(int x) 22 { 23 if (flag[x]) 24 { 25 flag[x]=0; 26 swap(sons[x][0],sons[x][1]); 27 flag[sons[x][0]]^=1; 28 flag[sons[x][1]]^=1; 29 } 30 } 31 32 void rotate(int x,int w) //rotate(node,0/1) 33 { 34 int y=father[x]; 35 down(y);down(x); 36 sons[y][!w]=sons[x][w]; 37 if (sons[x][w]) father[sons[x][w]]=y; 38 39 father[x]=father[y]; 40 if (father[y]) sons[father[y]][y==sons[father[y]][1]]=x; 41 42 sons[x][w]=y; 43 father[y]=x; 44 45 size[x]=size[y]; 46 size[y]=size[sons[y][0]]+size[sons[y][1]]+1; 47 } 48 49 void splay(int x,int y) //splay(node,position) 50 { 51 down(x); 52 while(father[x]!=y) 53 { 54 if (father[father[x]]==y) rotate(x,x==sons[father[x]][0]); 55 else 56 { 57 int t=father[x]; 58 int w=(sons[father[t]][0]==t); 59 if (sons[t][w]==x) 60 { 61 rotate(x,!w); 62 rotate(x,w); 63 } else 64 { 65 rotate(t,w); 66 rotate(x,w); 67 } 68 } 69 } 70 if (!y) spt=x; 71 } 72 73 void select(int x,int v,int p) //select(root,k,position) 74 { 75 down(x); 76 while(v!=size[sons[x][0]]+1) 77 { 78 if (v<=size[sons[x][0]]) 79 { 80 x=sons[x][0]; 81 down(x); 82 } 83 else 84 { 85 v-=size[sons[x][0]]+1; 86 x=sons[x][1]; 87 down(x); 88 } 89 } 90 splay(x,p); 91 } 92 93 bool done=false; 94 95 void outp(int x) 96 { 97 down(x); 98 if (sons[x][0]) outp(sons[x][0]); 99 if (done) printf(" "); 100 done=true; 101 printf("%d",data[x]); 102 if (sons[x][1]) outp(sons[x][1]); 103 } 104 105 void maketree(int l,int r) 106 { 107 spttail++; 108 int now=spttail,w=(l+r)/2,ls=0,rs=0; 109 data[now]=w; 110 flag[now]=false; 111 sons[now][0]=0; 112 sons[now][1]=0; 113 114 if (l<=w-1) 115 { 116 ls=spttail+1; 117 sons[now][0]=ls; 118 father[ls]=now; 119 maketree(l,w-1); 120 } 121 if (w+1<=r) 122 { 123 rs=spttail+1; 124 sons[now][1]=rs; 125 father[rs]=now; 126 maketree(w+1,r); 127 } 128 129 size[now]=size[ls]+size[rs]+1; 130 } 131 132 int main() 133 { 134 freopen("3487.txt","r",stdin); 135 136 int n,m; 137 scanf("%d%d",&n,&m); 138 while(!(n<0&&m<0)) 139 { 140 spt=1; 141 spttail=0; 142 father[1]=0; 143 maketree(1,n); 144 145 for (int i=1;i<=m;i++) 146 { 147 char s[10]; 148 scanf("%s",&s); 149 if (s[0]=='C') 150 { 151 int a,b,c,temp; 152 scanf("%d%d%d",&a,&b,&c); 153 154 if (a>1) 155 { 156 select(spt,a-1,0); 157 if (b<n) 158 { 159 select(spt,b+1,spt); 160 temp=sons[sons[spt][1]][0]; 161 sons[sons[spt][1]][0]=0; 162 size[spt]-=size[temp]; 163 size[sons[spt][1]]-=size[temp]; 164 } else 165 { 166 temp=sons[spt][1]; 167 sons[spt][1]=0; 168 size[spt]-=size[temp]; 169 } 170 } else 171 { 172 if (b<n) 173 { 174 select(spt,b+1,0); 175 temp=sons[spt][0]; 176 sons[spt][0]=0; 177 size[spt]-=size[temp]; 178 } else temp=spt; 179 } 180 181 if (c>0) 182 { 183 select(spt,c,0); 184 if (c==size[spt]) 185 { 186 sons[spt][1]=temp; 187 father[temp]=spt; 188 size[spt]+=size[temp]; 189 } else 190 { 191 select(spt,c+1,spt); 192 sons[sons[spt][1]][0]=temp; 193 father[temp]=sons[spt][1]; 194 size[spt]+=size[temp]; 195 size[sons[spt][1]]+=size[temp]; 196 } 197 } else 198 { 199 if (spt!=temp) 200 { 201 select(spt,1,0); 202 sons[spt][0]=temp; 203 father[temp]=spt; 204 size[spt]+=size[temp]; 205 } 206 } 207 } else 208 { 209 int a,b,temp; 210 scanf("%d%d",&a,&b); 211 if (a>1) 212 { 213 select(spt,a-1,0); 214 if (b<n) 215 { 216 select(spt,b+1,spt); 217 temp=sons[sons[spt][1]][0]; 218 } else 219 { 220 temp=sons[spt][1]; 221 } 222 } else 223 { 224 if (b<n) 225 { 226 select(spt,b+1,0); 227 temp=sons[spt][0]; 228 } else temp=spt; 229 } 230 flag[temp]^=1; 231 } 232 } 233 done=false; 234 outp(spt); 235 printf("\n"); 236 scanf("%d%d",&n,&m); 237 } 238 239 return 0; 240 }