星跃计划 | 新项目持续招募中!MSR Asia-MSR Redmond 联合科研计划邀你申请!

294b25f2a00d386141326c09b2d8f2a0.png

微软亚洲研究院微软总部联合推出的“星跃计划”科研合作项目邀请你来报名!本次“星跃计划”报名再次新增了来自微软 E+D (Experiences + Devices) Applied Research 全球总部的新项目,欢迎大家关注与申请!还在等什么?加入“星跃计划”,和我们一起跨越重洋,探索科研的更多可能!

该计划旨在为优秀人才创造与微软全球总部的研究团队一起聚焦真实前沿问题的机会。你将在国际化的科研环境中、在多元包容的科研氛围中、在顶尖研究员的指导下,做有影响力的研究!

目前还在招募的跨研究院联合科研项目覆盖智能推荐、图像缩放、计算机视觉、行为检测、社会计算、智能云等领域。研究项目如下:Online Aesthetic-Aware Smart Image Resizing, UserBERT: Pretrain User Models for Recommendation, Visual representation learning by vision-language tasks and its applications, DNN-based Detection of Abnormal User Behaviors, Reinforcing Pretrained Language Models for Generating Attractive Text Advertisements。星跃计划开放项目将持续更新,请及时关注获取最新动态! 


(文末还有集赞赠礼福利,不要错过!)

星跃亮点

  • 同时在微软亚洲研究院、微软全球总部顶级研究员的指导下进行科研工作,与不同研究背景的科研人员深度交流

  • 聚焦来自于工业界的真实前沿问题,致力于做出对学术及产业界有影响力的成果

  • 通过线下与线上的交流合作,在微软了解国际化、开放的科研氛围,及多元与包容的文化

申请资格

  • 本科、硕士、博士在读学生;延期(deferred)或间隔年(gap year)学生

  • 可全职在国内工作6-12个月

  • 各项目详细要求详见下方项目介绍

还在等什么?

快来寻找适合你的项目吧!

Online Aesthetic-Aware Smart Image Resizing

点击此处向上滑动阅览

For the new Designer app and Designer in Edge, we need to resize templates to different sizes, since different social media platforms require different target dimensions of the media, e.g., Facebook Timeline Post for personal accounts and business pages (1200 x 628), LinkedIn timeline post (1200 x 1200), Twitter timeline post (1600 x 900), etc. Image is the center of a template design. We need an ML-powered technique to automatically resize (including aspect ratio change, crop, zoom in/out) an image and put it into a resized template (more specifically speaking, resized image placeholder) for the target platform, so that the image placement looks good (i.e., maintaining the aesthetic values).

Research Areas 

Computer Vision and Machine Learning

Qualifications

  • Ph.D. students majoring in computer science, applied mathematics, electrical engineering or related technical discipline

  • Relevant experience in the development and application of computer vision and/or machine learning algorithms to solve challenging image understanding problems

  • Strong scientific programming skills, including C/C++, MATLAB, Python

  • Independent analytical problem-solving skills

  • Experience collaborating within research teams to develop advanced research concepts, prototypes, and systems

  • Strong communication skills

UserBERT: Pretrain User Models for Recommendation

点击此处向上滑动阅览

Pretrained language models such as BERT and UniLM have achieved huge success in many natural language processing scenarios. In many recommendation scenarios such as news recommendation, video recommendation, and ads CTR/CVR prediction, user models are very important to infer user interest and intent from user behaviors. Previously, user models are trained in a supervised task-specific way, which cannot achieve a global and universal understanding of users and may limit they capacities in serving personalized applications.

In this project, inspired by the success of pretrained language models, we plan to pretrain universal user models from large-scale unlabeled user behaviors using self-supervision tasks. The pretrained user models aim to better understand the characteristics, interest and intent of users, and can empower different downstream recommendation tasks by finetuning on their labeled data. Our recent work can be found at https://scholar.google.co.jp/citations?hl=zh-CN&user=0SZVO0sAAAAJ&view_op=list_works&sortby=pubdate.

Research Areas 

Recommender Systems and Natural Language Processing

Qualifications

  • Ph.D. students majoring in computer science, electronic engineering, or related areas

  • Self-motivated and passionate in research

  • Solid coding skills

  • Experienced in Recommender Systems and Natural Language Processing

Visual representation learning by vision-language tasks and its applications

点击此处向上滑动阅览

Learning visual representation by vision-language pair data has shown highly competitive compared to previous supervised and self-supervised approaches, pioneered by CLIP and DALL-E. Such vision-language learning approaches have also demonstrated strong performance on some pure vision and vision-language applications. The aim of this project is to continually push forward the boundary of this research direction.

Research Areas 

Computer vision

https://www.microsoft.com/en-us/research/group/visual-computing/

https://www.microsoft.com/en-us/research/people/hanhu/

Qualifications

  • Currently enrolled oversea Ph. D. students with promised or deferred offer, and is now staying in China

  • Major in computer vision, natural language processing, or machine learning

DNN-based Detection of 

Abnormal User Behaviors

点击此处向上滑动阅览

Are you excited to apply deep neural networks to solve practical problems? Would you like to help secure enterprise computer systems and users across the globe? Cyber-attacks on enterprises are proliferating and oftentimes causing damage to essential business operations. Adversaries may steal credentials of valid users and use their accounts to conduct malicious activities, which abruptly deviate from valid user behavior. We aim to prevent such attacks by detecting abrupt user behavior changes.

In this project, you will leverage deep neural networks to model behaviors of a large number of users, detect abrupt behavior changes of individual users, and determine if changed behaviors are malicious or not. You will be part of a joint initiative between Microsoft Research and the Microsoft Defender for Endpoint (MDE). During your internship, you will get to collaborate with some of the world’s best researchers in security and machine learning.  

You would be expected to: 

  • Closely work with researchers in China and Israel towards the research goals of the project.

  •  Develop and implement research ideas and conduct experiments to validate them.

  • Report and present findings.

Microsoft is an equal opportunity employer.

Research Areas 

Software Analytics, MSR Asia

https://www.microsoft.com/en-us/research/group/software-analytics/

Microsoft Defender for Endpoint (MDE)

This is a Microsoft engineering and research group that develops the Microsoft Defender for Endpoint, an enterprise endpoint security platform designed to help enterprise networks prevent, detect, investigate, and respond to advanced threats

https://www.microsoft.com/en-us/security/business/threat-protection/endpoint-defender

Qualifications

  • Must have at least 1 year of experience applying machine learning/deep learning to real world/ research problems

  • Demonstrated hands on the experience with Python through previous projects

  • Familiarity with Deep Learning frameworks like PyTorch, Tensorflow, etc

  • Keen ability for attention to detail and a strong analytical mindset

  • Excellent in English reading and reasonably good in English communications

  • Advisor’s permission

Those with the following conditions are preferred: 

  • Prior experience in behavior modeling

  • Prior experience in anomaly detection

  • Security knowledge a plus

Reinforcing Pretrained Language Models for Generating Attractive Text Advertisements

点击此处向上滑动阅览

While PLMs have been widely used to generate high-quality texts in a supervised manner (by imitating texts written by humans), they lack a mechanism for generating texts that directly optimize a given reward, e.g., given user feedback like user clicks or a criterion that cannot be directly optimized by using gradient descent. In real-world applications, we usually wish to achieve more than just imitating existing texts. For example, we may wish to generate more attractive texts that lead to increased user clicks, more diversified texts to improve user experience, and more personalized texts that are better tailored to user tastes. Combing RL with PLMs provides a unified solution for all these scenarios, and is the core for machines to achieve human parity in text generation. Such a method has the potential to be applied in a wide range of products, e.g., Microsoft Advertising (text ad generation), Microsoft News (news headline generation), and Microsoft Stores and Xbox (optimizing the description for recommended items).

In this project, we aim to study how pretrained language models (PLMs) can be enhanced by using deep reinforcement learning (RL) to generate attractive and high-quality text ads. While finetuning PLMs have been shown to be able to generate high-quality texts, RL additionally provides a principled way to directly optimize user feedback (e.g., user clicks) for improving attractiveness. Our initial RL method UMPG is deployed in Dynamic Search Ads and published in KDD 2021. We wish to extend the method so that it can work for all pretrained language models (in addition to UNILM) and study how the technique can benefit other important Microsoft Advertising products and international markets.

Research Areas 

Social Computing (SC), MSR Asia

https://www.microsoft.com/en-us/research/group/social-computing-beijing/

Microsoft Advertising, Microsoft Redmond

Qualifications

  • Ph.D. students majoring in computer science, electrical engineering, or equivalent areas

  • Experience with deep NLP and Transformers a strong plus

  • Background knowledge of language model pre-training and/or reinforcement learning

  • Capable of system implementing based on academic papers in English

Those with the following conditions are preferred: 

  • Good English reading and writing ability and communication skills, capable of writing English papers and documents

  • Active on GitHub, used or participated in well-known open source projects

申请方式

符合条件的申请者请填写下方申请表:

https://jinshuju.net/f/LadoJK

或扫描下方二维码,立即填写进入申请!

c647f6a2a7e053835a1da384ccba5323.png

特别福利!

转发本推送至朋友圈集赞 20 个,截图发送至“微软学术合作”微信公众号后台。前五名成功集赞的读者将获赠微软定制帆布包一个!

52a6848d8299438eff7fc1cfa3ea6570.png

(入选后工作人员将通过微信公众号后台与您联系,请注意查看消息。)

3dd80b4c3b96f4fc7369a721f52ca76b.png


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/291548.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux服务器上监控网络带宽与监控性能命令大全

【51CTO精选译文】本文介绍了一些可以用来监控网络使用情况的Linux命令行工具。这些工具可以监控通过网络接口传输的数据,并测量目前哪些数据所传输的速度。入站流量和出站流量分开来显示。一些命令可以显示单个进程所使用的带宽。这样一来,用户很容易发…

Android的AlertDialog详解

AlertDialog的构造方法全部是Protected的,所以不能直接通过new一个AlertDialog来创建出一个AlertDialog。 要创建一个AlertDialog,就要用到AlertDialog.Builder中的create()方法。 使用AlertDialog.Builder创建对话框需要了解以下几个方法: s…

workbench mysql mac_mysql workbench mac下载-mysql workbench mac 64位下载8.0.15 官方最新版__西西软件下载...

MySQL Workbench mac版是专为数据库架构师、开发人员和 DBA 打造的一个统一的可视化工具。MySQL Workbench 为数据库管理员、程序开发者和系统规划师提供可视化的Sql开发、数据库建模、以及数据库管理功能。MySQL Workbench 提供了数据建模工具、SQL 开发工具和全面的管理工具(…

C# 使用Awaiter

可以对任何提供 GetAwaiter 方法并返回 awaiter 的对象使用 async 关键字。awaiter 用 OnCompleted 方法实现 INotifyCompletion 接口。此方法在任务完成时调用。下面的代码片段不是在任务中使用 await,而是使用任务的 GetAwaiter 方法。Task 类的 GetAwaiter 返回一…

模板-1-模板类的特化

2019独角兽企业重金招聘Python工程师标准>>> 类模板的特化 语义: 表明该模板类在特殊的类型下具有不同的行为.类的定义,应该与模板类放入一个头文件中,告知编译器该特化类的存在;类成员的定义,应该放入源文件中.该特化类就与普通类一样,是一个实实在在存在的实体.语…

C# 内存法图像处理

内存法通过把图像储存在内存中进行处理,效率大大高于GetPixel方法,安全性高于指针法。 笔者当初写图像处理的时候发现网上多是用GetPixel方法实现,提到内存法的时候也没有具体实现,所以笔者在这里具体实现一下- -,望指…

mysql分组查询和子查询语句_6.MySQL分组聚合查询,子查询

自己的MySQL阅读笔记,持续更新,直到看书结束。数据库技术可以有效帮助一个组织或者企业科学、有效的管理数据,也是现在很多企业招聘数据分析师的必备要求之一。大家如果看过MySQL的书,也可以看我的知识导图做一个复习,…

ABP vNext微服务架构详细教程——分布式权限框架(下)

3公共组件添加公共类库Demo.Permissions&#xff0c;编辑Demo.Permissions.csproj文件&#xff0c;将 <Project Sdk"Microsoft.NET.Sdk"> 改为&#xff1a;<Project Sdk"Microsoft.NET.Sdk.Web">为Demo.Permissions项目添加Nuget引用Volo.Abp.…

ios开发第一步--虚拟机安装MAC OS X

暂时还没买Macbook&#xff0c;先用虚拟机练练手。 先说说准备工作&#xff0c;我是在win8下安装的&#xff0c;这个不是关键的&#xff0c;只要Vmware版本和MAC OS X版本确定就行了&#xff0c;win7下同样可以。 1、虚拟机Vmware10.0.0 下载地址 http://pan.baidu.com/s/1jGv…

算法学习笔记(三)-----各种基础排序问题

2019独角兽企业重金招聘Python工程师标准>>> 一、直接插入排序&#xff1a;是最简单的排序方法&#xff0c;算法简单来说就是可以把第一个数a[0]看做有序数组&#xff0c;那么a[1]要插入进来&#xff0c;对比&#xff0c;插入合适位置&#xff1b;然后a[0],a[1]是有…

mac之把打开终端设置快捷键为Ctrl+Alt+T

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到教程 1、在Automator.app中创建一个AppleScript Finder&#xff0d;>应用程序->Automator打开Automator.app&#xff0c;打开Automator后…

基础磁盘管理

一、设备文件Linux中设备类型分为字符设备与块设备&#xff0c;他们特点分别为&#xff1a;块设备特性&#xff1a;以“块”为单位进行存取&#xff0c;随机访问&#xff0c;例如磁盘字符设备特性&#xff1a;以“字节”单位进行存取&#xff0c;线性访问&#xff0c;例如键盘设…

HTML5 Canvas 画纸飞机组件

纸飞机模拟一个物体在规定设计轴线偏离方位。 1 //三角形2 function DrawTriangle(canvas, A, B, C) {3 //画个三角形,“A、B、C”是顶点4 with (canvas) {5 moveTo(A[0], A[1]);6 lineTo(B[0], B[1]);7 lineTo(C[0], C[1]);8 lineTo(…

OPPO R9凭创新赢得2000万销量,成2016年热销手机

2016年的手机市场虽然新闻不断但是整体状况并没有以往那么好&#xff0c;各方数据显示&#xff0c;2016年全年全球智能型手机出货量仅有2.3%的微幅增长&#xff0c;虽然中国市场的全年出货量通同比增长6%&#xff0c;但是比往年也大有不如&#xff0c;手机市场已从增量市场进入…

windows7 nginx php mysql_windows7配置Nginx+php+mysql的详细教程

最近在学习php&#xff0c;想把自己的学习经历记录下来&#xff0c;并写一些经验&#xff0c;仅供参考交流。此文适合那些刚刚接触php&#xff0c;想要学习并想要自己搭建Nginxphpmysql环境的同学。当然&#xff0c;你也可以选择集成好的安装包&#xff0c;比如 wamp等&#xf…

基于C#的计时管理器

问题我们使用各种系统时候会遇到以下问题&#xff1a;12306上购买火车票如果15分钟内未完成支付则订单自动取消。会议场馆预定座位&#xff0c;如果10分钟内未完成支付则预定自动取消。在指定时间之后&#xff0c;我需要执行一项任务。我之前做的很多系统&#xff0c;往往都是定…

HDU 2516 (Fabonacci Nim) 取石子游戏

这道题的结论就是&#xff0c;石子的个数为斐波那契数列某一项的时候&#xff0c;先手必败&#xff1b;否则&#xff0c;先手必胜。 结论很简单&#xff0c;但是证明却不是特别容易。找了好几篇博客&#xff0c;发现不一样的也就两篇&#xff0c;但是这两篇给的证明感觉证得不清…

access的ole对象换成mysql_ACCESS的Ole对象读取写入

Ole对象在Access中存储为二进制文件&#xff0c;读取的时候需要注意转换出的文件的编码格式1OleDbConnection OleConnnewOleDbConnection();2OleConn.ConnectionString"ProviderMicrosoft.Jet.OleDb.4.0;data sourceD:\WorkStation\Dialy_Sol\Dialy\Dialy.mdb";3OleD…

ABP vNext微服务架构详细教程——分布式权限框架(上)

1简介ABP vNext框架本身提供了一套权限框架&#xff0c;其功能非常丰富&#xff0c;具体可参考官方文档&#xff1a;https://docs.abp.io/en/abp/latest/Authorization但是我们使用时会发现&#xff0c;对于正常的单体应用&#xff0c;ABP vNext框架提供的权限系统没有问题&…

前端每隔几秒发送一个请求

2019独角兽企业重金招聘Python工程师标准>>> <html><head><SCRIPT LANGUAGE"JavaScript"> var timer;//声明一个定时器 var count 0; function test() { //每隔500毫秒执行一次add()方法 timer window.setInterval("add()"…