菜鸟偶遇信号量,擦出火花(只有不熟才会有火花)。于是上网搜资料和看《Unix环境高级编程》实现了几个小例题,高手请勿喷!这几位写得非常好啊:
题目来源: http://www.it165.net/os/html/201312/7039.html
信号量及其用法:http://www.cnblogs.com/hjslovewcl/archive/2011/03/03/2314341.html
Mutex与Semaphore区别著名的厕所理论:http://koti.mbnet.fi/niclasw/MutexSemaphore.html
哎呀,暴露了!我不是故意偷窥别人的……
一:一个生产者、一个消费者、一个资源情况
这种情况情况可以只用一个信号量,要生成或要消费只用尝试获取这个信号量,这里用了两个:full=1和empty=0,两个只为了和后面一致,1、0是赋初值。生产者和消费者情况如下:
//生产者: P(empty)生成资源并放进资源处 V(full)//消费者: P(full)消费资源 V(empty)
若生产者最先开始生产资源,P(empty),full和empty都成了0,此时若消费者想要消费,则P(full)时,full为0则睡眠等待,等生产者生结束就把full加1,看到消费者可怜地睡着了就唤醒它,然后消费者把full减1自己快活去了。
消费者消费过程中生产者若要生了,则会因为empty为0而休眠,等消费者结束就把empty加1,然后生产者开始生产。
上面的好理解,下面上代码:
#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <pthread.h>#include <x86_64-linux-gnu/sys/types.h> #include <x86_64-linux-gnu/sys/ipc.h> #include <x86_64-linux-gnu/sys/sem.h>int semInite(int semId, int value); int semDelete(int semId); int semP(int semId); int semV(int semId);//declare a union to be used union semun {int val; /* value for SETVAL */ struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */ unsigned short int *array; /* array for GETALL, SETALL */ struct seminfo *__buf; /* buffer for IPC_INFO */ };//semaphore declare static int semFullId; static int semEmptyId; static int source = 0; //source definition //new thread as a consumer void* child_thread(void* arg) {int ttt = 1;while(1){sleep(rand() % 19);printf("child No.%d times wants to consume...\n", ttt);semP(semFullId); // printf("child No.%d times start consuming. source = %d\n", ttt, source);source = 0;printf("child No.%d times end consuming. source = %d\n\n", ttt++, source);semV(semEmptyId); // }return (void*)0; }int main(void) { //create semaphoresemFullId = semget((key_t)1235, 1, 0666 | IPC_CREAT);semEmptyId = semget((key_t)1236, 1, 0666 | IPC_CREAT);semInite(semFullId, 0);semInite(semEmptyId, 1);pthread_t pid;pthread_create(&pid, NULL, child_thread, NULL);int tt = 1; while(1){sleep(rand() % 18);printf("parent No.%d times wants to produce...\n", tt);semP(semEmptyId); // printf("parent No.%d times start producing. source = %d\n", tt, source);source = rand() % 100;printf("parent No.%d times end producing. source = %d\n", tt++, source);semV(semFullId); // }semDelete(semFullId);semDelete(semEmptyId);return 0; }//set semaphore as default value int semInite(int semId, int value) {union semun semUnion;semUnion.val = value; //set default semaphorereturn semctl(semId, 0, SETVAL, semUnion); }//delete semaphore int semDelete(int semId) {union semun semUnion;return semctl(semId, 0, IPC_RMID, semUnion); }//semaphore P operation int semP(int semId) {struct sembuf semBuf;semBuf.sem_num = 0; //indicate it is not semaphore arraysemBuf.sem_op = -1; //subtract onesemBuf.sem_flg = SEM_UNDO;return semop(semId, &semBuf, 1); //return value }//semaphore V operation int semV(int semId) {struct sembuf semBuf;semBuf.sem_num = 0; //indicate it is not semaphore arraysemBuf.sem_op = 1; //subtract onesemBuf.sem_flg = SEM_UNDO;return semop(semId, &semBuf, 1); //return value }
两个信号量其实应该用信号量集的,因为它本来就是针对集合的,但是由于刚入门,为了易懂,就用两个。两个线程,创建的新线程当做消费者了。其中unix的几个信号量的函数看了半天,有点复杂,简单不准确来讲:
//获得一个信号量啦,第二个参数是想要创建的信号量个数, //因为unix操作的是信号量集合,设为1不就一个信号量了嘛 //其他参数我不管了 int semget(key_t key, int num_sems, int sem_flags);//信号量集合的操作,这个可以用来实现P、V的 +1 -1 的功能 int semop(int sem_id, struct sembuf *sem_ops, size_t num_sem_ops);//信号量集合的控制,如初始化删除等 int semctl(int sem_id, int sem_num, int command, ...);
运行:
二:一个生产者、一个消费者、N个资源情况
这里资源用是一个数组代替了。其实本质上和上面类似,每次只让生产者或消费者中的一个进入,进入后放到哪个地方或从哪个地方取就得用一个标志来说明了,其实也可以为每一资源加上信号量的。
这里在生产者和消费者那里都设置了一个static的变量当做游标,指示下个资源放到哪个位置和下次从哪取资源。staitic变量用在这里很合适,因为只会初始化一次。
#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <pthread.h>#include <x86_64-linux-gnu/sys/types.h> #include <x86_64-linux-gnu/sys/ipc.h> #include <x86_64-linux-gnu/sys/sem.h>#define N 5int semInite(int semId, int value); int semDelete(int semId); int semP(int semId); int semV(int semId);//declare a union to be used union semun {int val; /* value for SETVAL */ struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */ unsigned short int *array; /* array for GETALL, SETALL */ struct seminfo *__buf; /* buffer for IPC_INFO */ };//semaphore declare static int semFullId; static int semEmptyId; static int srcArr[N]; //source definition //new thread as a consumer void* child_thread(void* arg) {int ttt = 1;while(1){static int pToGet = 0; //get source from the positionsleep(rand() % 19);printf("child No.%d times wants to consume(get from index %d)...\n", ttt, pToGet);semP(semFullId); // printf("child No.%d times start consuming.(get from index %d, data is %d)\n", ttt, pToGet, srcArr[pToGet]);srcArr[pToGet] = 0;printf("child No.%d times end consuming. (get from index %d)\n\n", ttt++, pToGet);pToGet = (pToGet + 1) % N;semV(semEmptyId); // }return (void*)0; }int main(void) { //create semaphoresemFullId = semget((key_t)1235, 1, 0666 | IPC_CREAT);semEmptyId = semget((key_t)1236, 1, 0666 | IPC_CREAT);semInite(semFullId, 0);semInite(semEmptyId, N); //N source pthread_t pid;pthread_create(&pid, NULL, child_thread, NULL);int tt = 1; while(1){static int pToPut = 0; //next position where source to be filled insleep(rand() % 18);printf("parent No.%d times wants to produce(put in %d index)...\n", tt, pToPut);semP(semEmptyId); // printf("parent No.%d times start producing.(put in %d index, original data is %d)\n", tt, pToPut, srcArr[pToPut]);int temp = rand() % 100;srcArr[pToPut] = temp;printf("parent No.%d times end producing.(put in %d index, now data is %d)\n", tt++, pToPut, srcArr[pToPut]);pToPut = (pToPut + 1) % N;semV(semFullId); // }semDelete(semFullId);semDelete(semEmptyId);return 0; }//set semaphore as default value int semInite(int semId, int value) {union semun semUnion;semUnion.val = value; //set default semaphorereturn semctl(semId, 0, SETVAL, semUnion); }//delete semaphore int semDelete(int semId) {union semun semUnion;return semctl(semId, 0, IPC_RMID, semUnion); }//semaphore P operation int semP(int semId) {struct sembuf semBuf;semBuf.sem_num = 0; //indicate it is not semaphore arraysemBuf.sem_op = -1; //subtract onesemBuf.sem_flg = SEM_UNDO;return semop(semId, &semBuf, 1); //return value }//semaphore V operation int semV(int semId) {struct sembuf semBuf;semBuf.sem_num = 0; //indicate it is not semaphore arraysemBuf.sem_op = 1; //subtract onesemBuf.sem_flg = SEM_UNDO;return semop(semId, &semBuf, 1); //return value }
运行结果:
三:N个生产者,N个消费者,N个资源
这种情况不仅生产者和消费者之间要通过上述的方式协调使用资源,而且生产者内部和消费者内部也要协调。定义四个信号量:
empty——表示缓冲区是否为空,初值为n。
full——表示缓冲区中是否为满,初值为0。
mutex1——生产者之间的互斥信号量,初值为1。
mutex2——消费者之间的互斥信号量,初值为1。
//生产者进程 P(mutex1)P(empty)生产数据并放进特定位置V(full) V(mutex1)//消费者进程 P(mutex2)P(full)消费数据V(empty) V(mutex2)
其实上面生产者或者消费者获取互斥量或信号量的顺序可以颠倒的,不会产生死锁。
当然这个问题可以用其他更好的方式解决,我还得继续学习。