PostgreSQL 统计信息pg_statistic格式及导入导出dump_stat - 兼容Oracle

标签

PostgreSQL , dump_stat , 统计信息 , 导出导入


背景

《PostgreSQL 规格评估 - 微观、宏观、精准 多视角估算数据库性能(选型、做预算不求人)》

EXPLAIN是PG数据库用于输出SQL执行计划的语法,

1、生成的执行计划中包含COST一项。

如果校准了成本因子,COST可以和SQL实际执行时间对其。因子校对的方法如下,实际上每一种硬件,我们只需要校对一遍即可。

《优化器成本因子校对(disk,ssd,memory IO开销精算) - PostgreSQL real seq_page_cost & random_page_cost in disks,ssd,memory》

《优化器成本因子校对 - PostgreSQL explain cost constants alignment to timestamp》

校对因子如下:

#seq_page_cost = 1.0                    # measured on an arbitrary scale    
random_page_cost = 1.2                  # same scale as above    
#cpu_tuple_cost = 0.01                  # same scale as above    
#cpu_index_tuple_cost = 0.005           # same scale as above    
#cpu_operator_cost = 0.0025             # same scale as above    # 以下不需要校对, 不考虑并行计算SQL    
parallel_tuple_cost = 0.1               # same scale as above    
parallel_setup_cost = 1000.0            # same scale as above    
effective_cache_size = 10GB    

2、评估COST还需要依赖统计信息柱状图:

涉及reltuples, relpages. 表示评估的记录数以及占用多少个数据块。注意源头的block_size可能和PG的不一致,占用多少个块需要转换一下。(show block_size可以查看数据块大小。)   postgres=# \d pg_class    Table "pg_catalog.pg_class"    Column        |     Type     | Collation | Nullable | Default     
---------------------+--------------+-----------+----------+---------    relname             | name         |           | not null |   -- 对象名  relnamespace        | oid          |           | not null |   -- 对象所属的schema, 对应pg_namespace.oid  reltype             | oid          |           | not null |     reloftype           | oid          |           | not null |     relowner            | oid          |           | not null |     relam               | oid          |           | not null |     relfilenode         | oid          |           | not null |     reltablespace       | oid          |           | not null |     relpages            | integer      |           | not null |   -- 评估的页数(单位为block_size)  reltuples           | real         |           | not null |   -- 评估的记录数  relallvisible       | integer      |           | not null |     reltoastrelid       | oid          |           | not null |     relhasindex         | boolean      |           | not null |     relisshared         | boolean      |           | not null |     relpersistence      | "char"       |           | not null |     relkind             | "char"       |           | not null |     relnatts            | smallint     |           | not null |     relchecks           | smallint     |           | not null |     relhasoids          | boolean      |           | not null |     relhaspkey          | boolean      |           | not null |     relhasrules         | boolean      |           | not null |     relhastriggers      | boolean      |           | not null |     relhassubclass      | boolean      |           | not null |     relrowsecurity      | boolean      |           | not null |     relforcerowsecurity | boolean      |           | not null |     relispopulated      | boolean      |           | not null |     relreplident        | "char"       |           | not null |     relispartition      | boolean      |           | not null |     relfrozenxid        | xid          |           | not null |     relminmxid          | xid          |           | not null |     relacl              | aclitem[]    |           |          |     reloptions          | text[]       |           |          |     relpartbound        | pg_node_tree |           |          |     
Indexes:    "pg_class_oid_index" UNIQUE, btree (oid)    "pg_class_relname_nsp_index" UNIQUE, btree (relname, relnamespace)    "pg_class_tblspc_relfilenode_index" btree (reltablespace, relfilenode)    涉及   空值比例、平均列宽、唯一值比例或个数、高频值以及频率、柱状图分布、存储相关性、多值列(高频元素及比例、元素柱状图分布)。    -- 这个是视图:  postgres=# \d pg_stats     View "pg_catalog.pg_stats"    Column         |   Type   | Collation | Nullable | Default     
------------------------+----------+-----------+----------+---------    schemaname             | name     |           |          |   -- 对象所属的schema  tablename              | name     |           |          |   -- 对象名  attname                | name     |           |          |   -- 列名  inherited              | boolean  |           |          |   -- 是否为继承表的统计信息(false时表示当前表的统计信息,true时表示包含所有继承表的统计信息)  null_frac              | real     |           |          |   -- 该列空值比例  avg_width              | integer  |           |          |   -- 该列平均长度  n_distinct             | real     |           |          |   -- 该列唯一值个数(-1表示唯一,小于1表示占比,大于等于1表示实际的唯一值个数)  most_common_vals       | anyarray |           |          |   -- 该列高频词  most_common_freqs      | real[]   |           |          |   -- 该列高频词对应的出现频率  histogram_bounds       | anyarray |           |          |   -- 该列柱状图(表示隔出的每个BUCKET的记录数均等)  correlation            | real     |           |          |   -- 该列存储相关性(-1到1的区间),绝对值越小,存储越离散。小于0表示反向相关,大于0表示正向相关  most_common_elems      | anyarray |           |          |   -- 该列为多值类型(数组)时,多值元素的高频词  most_common_elem_freqs | real[]   |           |          |   -- 多值元素高频词的出现频率  elem_count_histogram   | real[]   |           |          |   -- 多值元素的柱状图中,每个区间的非空唯一元素个数  -- 这个是实际存储的数据(也就是要导入的部分):  
-- https://www.postgresql.org/docs/10/static/catalog-pg-statistic.html  postgres=# \d pg_statistic    Table "pg_catalog.pg_statistic"    Column    |   Type   | Collation | Nullable | Default     
-------------+----------+-----------+----------+---------    starelid    | oid      |           | not null |   -- 对象OID,对应pg_class.oid  staattnum   | smallint |           | not null |   -- 该列在表中的位置序号,对应pg_attribute.attnum  stainherit  | boolean  |           | not null |   -- 是否为继承表的统计信息(false时表示当前表的统计信息,true时表示包含所有继承表的统计信息)  stanullfrac | real     |           | not null |   -- 空值比例  stawidth    | integer  |           | not null |   -- 平均长度  stadistinct | real     |           | not null |   -- 唯一值个数、比例  stakind1    | smallint |           | not null |   -- 表示第1个SLOT的统计信息分类编号  stakind2    | smallint |           | not null |   -- 表示第2个SLOT的统计信息分类编号  stakind3    | smallint |           | not null |   -- 表示第3个SLOT的统计信息分类编号  stakind4    | smallint |           | not null |   -- 表示第4个SLOT的统计信息分类编号  stakind5    | smallint |           | not null |   -- 表示第5个SLOT的统计信息分类编号  staop1      | oid      |           | not null |   -- 表示第1个SLOT的统计信息是用哪个operator生成的(例如统计柱状图边界,需要用到 "<" 这个操作符)  staop2      | oid      |           | not null |   -- 表示第2个SLOT的统计信息是用哪个operator生成的(例如统计柱状图边界,需要用到 "<" 这个操作符)  staop3      | oid      |           | not null |   -- 表示第3个SLOT的统计信息是用哪个operator生成的(例如统计柱状图边界,需要用到 "<" 这个操作符)  staop4      | oid      |           | not null |   -- 表示第4个SLOT的统计信息是用哪个operator生成的(例如统计柱状图边界,需要用到 "<" 这个操作符)  staop5      | oid      |           | not null |   -- 表示第5个SLOT的统计信息是用哪个operator生成的(例如统计柱状图边界,需要用到 "<" 这个操作符)  stanumbers1 | real[]   |           |          |   -- 表示第1个SLOT的以numeric[]为结果的统计信息,NULL说明这个SLOT分类没有numeric的统计信息。  stanumbers2 | real[]   |           |          |   -- 表示第2个SLOT的以numeric[]为结果的统计信息,NULL说明这个SLOT分类没有numeric的统计信息。  stanumbers3 | real[]   |           |          |   -- 表示第3个SLOT的以numeric[]为结果的统计信息,NULL说明这个SLOT分类没有numeric的统计信息。  stanumbers4 | real[]   |           |          |   -- 表示第4个SLOT的以numeric[]为结果的统计信息,NULL说明这个SLOT分类没有numeric的统计信息。  stanumbers5 | real[]   |           |          |   -- 表示第5个SLOT的以numeric[]为结果的统计信息,NULL说明这个SLOT分类没有numeric的统计信息。  stavalues1  | anyarray |           |          |   -- 表示第1个SLOT的以anyarray[]为结果的统计信息,NULL说明这个SLOT分类没有anyarray[]统计信息。数组类型为列的元素类型,或者列本身的类型。  stavalues2  | anyarray |           |          |   -- 表示第2个SLOT的以anyarray[]为结果的统计信息,NULL说明这个SLOT分类没有anyarray[]统计信息。数组类型为列的元素类型,或者列本身的类型。  stavalues3  | anyarray |           |          |   -- 表示第3个SLOT的以anyarray[]为结果的统计信息,NULL说明这个SLOT分类没有anyarray[]统计信息。数组类型为列的元素类型,或者列本身的类型。  stavalues4  | anyarray |           |          |   -- 表示第4个SLOT的以anyarray[]为结果的统计信息,NULL说明这个SLOT分类没有anyarray[]统计信息。数组类型为列的元素类型,或者列本身的类型。  stavalues5  | anyarray |           |          |   -- 表示第5个SLOT的以anyarray[]为结果的统计信息,NULL说明这个SLOT分类没有anyarray[]统计信息。数组类型为列的元素类型,或者列本身的类型。  
Indexes:    "pg_statistic_relid_att_inh_index" UNIQUE, btree (starelid, staattnum, stainherit)    

statkind的定义

src/include/catalog/pg_statistic.h

/*  * Currently, five statistical slot "kinds" are defined by core PostgreSQL,  * as documented below.  Additional "kinds" will probably appear in  * future to help cope with non-scalar datatypes.  Also, custom data types  * can define their own "kind" codes by mutual agreement between a custom  * typanalyze routine and the selectivity estimation functions of the type's  * operators.  *  * Code reading the pg_statistic relation should not assume that a particular  * data "kind" will appear in any particular slot.  Instead, search the  * stakind fields to see if the desired data is available.  (The standard  * function get_attstatsslot() may be used for this.)  */  /*  * The present allocation of "kind" codes is:  *  *      1-99:           reserved for assignment by the core PostgreSQL project  *                              (values in this range will be documented in this file)  *      100-199:        reserved for assignment by the PostGIS project  *                              (values to be documented in PostGIS documentation)  *      200-299:        reserved for assignment by the ESRI ST_Geometry project  *                              (values to be documented in ESRI ST_Geometry documentation)  *      300-9999:       reserved for future public assignments  *  * For private use you may choose a "kind" code at random in the range  * 10000-30000.  However, for code that is to be widely disseminated it is  * better to obtain a publicly defined "kind" code by request from the  * PostgreSQL Global Development Group.  */  /*  * In a "most common values" slot, staop is the OID of the "=" operator  * used to decide whether values are the same or not.  stavalues contains  * the K most common non-null values appearing in the column, and stanumbers  * contains their frequencies (fractions of total row count).  The values  * shall be ordered in decreasing frequency.  Note that since the arrays are  * variable-size, K may be chosen by the statistics collector.  Values should  * not appear in MCV unless they have been observed to occur more than once;  * a unique column will have no MCV slot.  */  
#define STATISTIC_KIND_MCV      1  /*  * A "histogram" slot describes the distribution of scalar data.  staop is  * the OID of the "<" operator that describes the sort ordering.  (In theory,  * more than one histogram could appear, if a datatype has more than one  * useful sort operator.)  stavalues contains M (>=2) non-null values that  * divide the non-null column data values into M-1 bins of approximately equal  * population.  The first stavalues item is the MIN and the last is the MAX.  * stanumbers is not used and should be NULL.  IMPORTANT POINT: if an MCV  * slot is also provided, then the histogram describes the data distribution  * *after removing the values listed in MCV* (thus, it's a "compressed  * histogram" in the technical parlance).  This allows a more accurate  * representation of the distribution of a column with some very-common  * values.  In a column with only a few distinct values, it's possible that  * the MCV list describes the entire data population; in this case the  * histogram reduces to empty and should be omitted.  */  
#define STATISTIC_KIND_HISTOGRAM  2  /*  * A "correlation" slot describes the correlation between the physical order  * of table tuples and the ordering of data values of this column, as seen  * by the "<" operator identified by staop.  (As with the histogram, more  * than one entry could theoretically appear.)  stavalues is not used and  * should be NULL.  stanumbers contains a single entry, the correlation  * coefficient between the sequence of data values and the sequence of  * their actual tuple positions.  The coefficient ranges from +1 to -1.  */  
#define STATISTIC_KIND_CORRELATION      3  /*  * A "most common elements" slot is similar to a "most common values" slot,  * except that it stores the most common non-null *elements* of the column  * values.  This is useful when the column datatype is an array or some other  * type with identifiable elements (for instance, tsvector).  staop contains  * the equality operator appropriate to the element type.  stavalues contains  * the most common element values, and stanumbers their frequencies.  Unlike  * MCV slots, frequencies are measured as the fraction of non-null rows the  * element value appears in, not the frequency of all rows.  Also unlike  * MCV slots, the values are sorted into the element type's default order  * (to support binary search for a particular value).  Since this puts the  * minimum and maximum frequencies at unpredictable spots in stanumbers,  * there are two extra members of stanumbers, holding copies of the minimum  * and maximum frequencies.  Optionally, there can be a third extra member,  * which holds the frequency of null elements (expressed in the same terms:  * the fraction of non-null rows that contain at least one null element).  If  * this member is omitted, the column is presumed to contain no null elements.  *  * Note: in current usage for tsvector columns, the stavalues elements are of  * type text, even though their representation within tsvector is not  * exactly text.  */  
#define STATISTIC_KIND_MCELEM  4  /*  * A "distinct elements count histogram" slot describes the distribution of  * the number of distinct element values present in each row of an array-type  * column.  Only non-null rows are considered, and only non-null elements.  * staop contains the equality operator appropriate to the element type.  * stavalues is not used and should be NULL.  The last member of stanumbers is  * the average count of distinct element values over all non-null rows.  The  * preceding M (>=2) members form a histogram that divides the population of  * distinct-elements counts into M-1 bins of approximately equal population.  * The first of these is the minimum observed count, and the last the maximum.  */  
#define STATISTIC_KIND_DECHIST  5  /*  * A "length histogram" slot describes the distribution of range lengths in  * rows of a range-type column. stanumbers contains a single entry, the  * fraction of empty ranges. stavalues is a histogram of non-empty lengths, in  * a format similar to STATISTIC_KIND_HISTOGRAM: it contains M (>=2) range  * values that divide the column data values into M-1 bins of approximately  * equal population. The lengths are stored as float8s, as measured by the  * range type's subdiff function. Only non-null rows are considered.  */  
#define STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM  6  /*  * A "bounds histogram" slot is similar to STATISTIC_KIND_HISTOGRAM, but for  * a range-type column.  stavalues contains M (>=2) range values that divide  * the column data values into M-1 bins of approximately equal population.  * Unlike a regular scalar histogram, this is actually two histograms combined  * into a single array, with the lower bounds of each value forming a  * histogram of lower bounds, and the upper bounds a histogram of upper  * bounds.  Only non-NULL, non-empty ranges are included.  */  
#define STATISTIC_KIND_BOUNDS_HISTOGRAM  7  

那么这些统计信息如何导入导出呢?

导出导入统计信息

https://postgrespro.com/docs/postgresproee/9.6/dump-stat.html

dump_stat这个插件是PostgreSQL pro推出的兼容9.6版本的导出统计信息的插件。

代码如下:

https://github.com/postgrespro/postgrespro/tree/PGPRO9_6

https://github.com/postgrespro/postgrespro/tree/PGPRO9_6/contrib/dump_stat

导出

通过dump_stat导出(导出的结构已经是SQL形式),然后通过SQL导入。

$ psql test -A    
test=# \t    
test=# \o dump_stat.sql    
test=# select dump_statistic();    

pg_statistic的每一条记录,产生一条如下SQL:

WITH upsert as (    UPDATE pg_catalog.pg_statistic SET column_name = expression [, ...]    WHERE to_schema_qualified_relation(starelid) = t_relname    AND to_attname(t_relname, staattnum) = t_attname    AND to_atttype(t_relname, staattnum) = t_atttype    AND stainherit = t_stainherit    RETURNING *)    
ins as (    SELECT expression [, ...]    WHERE NOT EXISTS (SELECT * FROM upsert)    AND to_attnum(t_relname, t_attname) IS NOT NULL    AND to_atttype(t_relname, t_attname) = t_atttype)    
INSERT INTO pg_catalog.pg_statistic SELECT * FROM ins;    where expression can be one of:    array_in(array_text, type_name::regtype::oid, -1)    
value::type_name    

stat导入的实际例子

(表示public.test表的info列的统计信息,如果存在则更新,不存在则插入。)

WITH   upsert as (   UPDATE pg_catalog.pg_statistic   SET   stanullfrac = 0, stawidth = 4, stadistinct = -1, stakind1 = 2, stakind2 = 3, stakind3 = 0, stakind4 = 0, stakind5 = 0, staop1 = 'pg_catalog.<(pg_catalog.text, pg_catalog.text)'::regoperator, staop2 = 'pg_catalog.<(pg_catalog.text, pg_catalog.text)'::regoperator, staop3 = '0'::regoperator, staop4 = '0'::regoperator, staop5 = '0'::regoperator, stanumbers1 = NULL::real[], stanumbers2 = '{-0.5}'::real[], stanumbers3 = NULL::real[], stanumbers4 = NULL::real[], stanumbers5 = NULL::real[], stavalues1 = array_in('{abc,cde,test}', 'pg_catalog.text'::regtype, -1)::anyarray, stavalues2 = NULL::anyarray, stavalues3 = NULL::anyarray, stavalues4 = NULL::anyarray, stavalues5 = NULL::anyarray   WHERE to_schema_qualified_relation(starelid) = 'public.test' AND to_attname('public.test', staattnum) = 'info' AND to_atttype('public.test', staattnum) = 'pg_catalog.text' AND stainherit = false   RETURNING *  ),   ins as (   SELECT   'public.test'::regclass,   to_attnum('public.test', 'info'),   'false'::boolean,   0::real,   4::integer,   -1::real,   2,  -- stakind=2 表示柱状图  3,  -- stakind=3 表示相关性  0,   0,   0,   'pg_catalog.<(pg_catalog.text, pg_catalog.text)'::regoperator,   'pg_catalog.<(pg_catalog.text, pg_catalog.text)'::regoperator,   '0'::regoperator,   '0'::regoperator,   '0'::regoperator,   NULL::real[],   '{-0.5}'::real[],   NULL::real[],   NULL::real[],   NULL::real[],   array_in('{abc,cde,test}', 'pg_catalog.text'::regtype, -1)::anyarray,   NULL::anyarray,   NULL::anyarray,   NULL::anyarray,   NULL::anyarray   WHERE NOT EXISTS (SELECT * FROM upsert) AND to_attnum('public.test', 'info') IS NOT NULL AND to_atttype('public.test', 'info') = 'pg_catalog.text'  )   
INSERT INTO pg_catalog.pg_statistic SELECT * FROM ins;  

导入

1、修改postgresql.conf,允许修改系统表,重启数据库生效配置

vi postgresql.conf  allow_system_table_mods=on  pg_ctl restart -m fast  

2、导入统计信息

-- 1 pg_class    update pg_class set reltuples=?, relpages=? where oid=?;    -- 2 pg_statistic    WITH upsert as (    UPDATE pg_catalog.pg_statistic SET column_name = expression [, ...]    WHERE to_schema_qualified_relation(starelid) = t_relname    AND to_attname(t_relname, staattnum) = t_attname    AND to_atttype(t_relname, staattnum) = t_atttype    AND stainherit = t_stainherit    RETURNING *)    
ins as (    SELECT expression [, ...]    WHERE NOT EXISTS (SELECT * FROM upsert)    AND to_attnum(t_relname, t_attname) IS NOT NULL    AND to_atttype(t_relname, t_attname) = t_atttype)    
INSERT INTO pg_catalog.pg_statistic SELECT * FROM ins;    where expression can be one of:    array_in(array_text, type_name::regtype::oid, -1)    
value::type_name    

3、导入完成后,将allow_system_table_mods设置为off,重启数据库。

dump_statistic代码

CREATE FUNCTION dump_statistic(relid oid) RETURNS SETOF TEXT AS $$  DECLARE  result  text;  cmd             text;           -- main query  in_args text;           -- args for insert  up_args text;           -- args for upsert  fstaop  text := '%s::regoperator';  arr_in  text := 'array_in(%s, %s::regtype, -1)::anyarray';  stacols text[] = ARRAY['stakind', 'staop',  'stanumbers', 'stavalues' ];  r               record;  i               int;  j               text;  ncols   int := 26;      -- number of columns in pg_statistic  stanum  text[];         -- stanumbers{1, 5}  staval  text[];         -- stavalues{1, 5}  staop   text[];         -- staop{1, 5}  relname text;           -- quoted relation name  attname text;           -- quoted attribute name  atttype text;           -- quoted attribute type  BEGIN  for r in  select * from pg_catalog.pg_statistic  where starelid = relid  and get_namespace(starelid) != to_namespace('information_schema')  and get_namespace(starelid) != to_namespace('pg_catalog') loop  relname := to_schema_qualified_relation(r.starelid);  attname := quote_literal(to_attname(relname, r.staattnum));  atttype := quote_literal(to_atttype(relname, r.staattnum));  relname := quote_literal(relname); -- redefine relname  in_args := '';  up_args = 'stanullfrac = %s, stawidth = %s, stadistinct = %s, ';  cmd := 'WITH upsert as ( ' ||  'UPDATE pg_catalog.pg_statistic SET %s ' ||  'WHERE to_schema_qualified_relation(starelid) = ' || relname || ' '  'AND to_attname(' || relname || ', staattnum) = ' || attname || ' '  'AND to_atttype(' || relname || ', staattnum) = ' || atttype || ' '  'AND stainherit = ' || r.stainherit || ' ' ||  'RETURNING *), ' ||  'ins as ( ' ||  'SELECT %s ' ||  'WHERE NOT EXISTS (SELECT * FROM upsert) ' ||  'AND to_attnum(' || relname || ', ' || attname || ') IS NOT NULL '  'AND to_atttype(' || relname || ', ' || attname || ') = ' || atttype || ') '  'INSERT INTO pg_catalog.pg_statistic SELECT * FROM ins;';  for i in 1..ncols loop  in_args := in_args || '%s';  if i != ncols then  in_args := in_args || ', ';  end if;  end loop;  for j in 1..4 loop  for i in 1..5 loop  up_args := up_args || format('%s%s = %%s', stacols[j], i);  if i * j != 20 then  up_args := up_args || ', ';  end if;  end loop;  end loop;  cmd := format(cmd, up_args, in_args);   --prepare template for main query  staop := array[format(fstaop, quote_literal(to_schema_qualified_operator(r.staop1))),  format(fstaop, quote_literal(to_schema_qualified_operator(r.staop2))),  format(fstaop, quote_literal(to_schema_qualified_operator(r.staop3))),  format(fstaop, quote_literal(to_schema_qualified_operator(r.staop4))),  format(fstaop, quote_literal(to_schema_qualified_operator(r.staop5)))];  stanum := array[r.stanumbers1::text,  r.stanumbers2::text,  r.stanumbers3::text,  r.stanumbers4::text,  r.stanumbers5::text];  for i in 1..5 loop  if stanum[i] is null then  stanum[i] := 'NULL::real[]';  else  stanum[i] := '''' || stanum[i] || '''::real[]';  end if;  end loop;  if r.stavalues1 is not null then  staval[1] := format(arr_in, quote_literal(r.stavalues1),  quote_literal(  to_schema_qualified_type(  anyarray_elemtype(r.stavalues1))));  else  staval[1] := 'NULL::anyarray';  end if;  if r.stavalues2 is not null then  staval[2] := format(arr_in, quote_literal(r.stavalues2),  quote_literal(  to_schema_qualified_type(  anyarray_elemtype(r.stavalues2))));  else  staval[2] := 'NULL::anyarray';  end if;  if r.stavalues3 is not null then  staval[3] := format(arr_in, quote_literal(r.stavalues3),  quote_literal(  to_schema_qualified_type(  anyarray_elemtype(r.stavalues3))));  else  staval[3] := 'NULL::anyarray';  end if;  if r.stavalues4 is not null then  staval[4] := format(arr_in, quote_literal(r.stavalues4),  quote_literal(  to_schema_qualified_type(  anyarray_elemtype(r.stavalues4))));  else  staval[4] := 'NULL::anyarray';  end if;  if r.stavalues5 is not null then  staval[5] := format(arr_in, quote_literal(r.stavalues5),  quote_literal(  to_schema_qualified_type(  anyarray_elemtype(r.stavalues5))));  else  staval[5] := 'NULL::anyarray';  end if;  --DEBUG  --staop := array['{arr}', '{arr}', '{arr}', '{arr}', '{arr}'];  --stanum := array['{num}', '{num}', '{num}', '{num}', '{num}'];  --staval := array['{val}', '{val}', '{val}', '{val}', '{val}'];  result := format(cmd,  r.stanullfrac,  r.stawidth,  r.stadistinct,  -- stakind  r.stakind1, r.stakind2, r.stakind3, r.stakind4, r.stakind5,  -- staop  staop[1], staop[2], staop[3], staop[4], staop[5],  -- stanumbers  stanum[1], stanum[2], stanum[3], stanum[4], stanum[5],  -- stavalues  staval[1], staval[2], staval[3], staval[4], staval[5],  -- first 6 columns  format('%s::regclass', relname),  format('to_attnum(%s, %s)', relname, attname),  '''' || r.stainherit || '''::boolean',  r.stanullfrac || '::real',  r.stawidth || '::integer',  r.stadistinct || '::real',  -- stakind  r.stakind1, r.stakind2, r.stakind3, r.stakind4, r.stakind5,  -- staop  staop[1], staop[2], staop[3], staop[4], staop[5],  -- stanumbers  stanum[1], stanum[2], stanum[3], stanum[4], stanum[5],  -- stavalues  staval[1], staval[2], staval[3], staval[4], staval[5]);  return next result;  end loop;  return;  END;  
$$ LANGUAGE plpgsql;  

我们甚至可以将Oracle数据库的统计信息,平移到PG数据库,对齐需要的元素即可:

记录数、占用多少个数据块。每列的空值比例、平均列宽、唯一值比例或个数、高频值以及频率、柱状图分布、存储相关性、多值列(高频元素及比例、元素柱状图分布)。

好处:在迁移ORACLE数据时,可以关闭autovacuumm(提高导入速度),通过这种方法来导入统计信息。(只要元素对应即可,当然有些元素可能是ORACLE中不采集的,比如多值列的统计信息)。

参考

https://github.com/postgrespro/postgrespro/tree/PGPRO9_6/contrib/dump_stat

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/286615.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PHP: 手把手编写自己的 MVC 框架实例教程

1 什么是MVC MVC模式&#xff08;Model-View-Controller&#xff09;是软件工程中的一种软件架构模式&#xff0c;把软件系统分为三个基本部分&#xff1a;模型&#xff08;Model&#xff09;、视图&#xff08;View&#xff09;和控制器&#xff08;Controller&#xff09;。 …

freemarker 异常处理

SSH2处理方案&#xff1a; freemarker文件如果出错&#xff0c;网站的前台页面会报出很明显的错误-焦黄的背景&#xff0c;血红的文字&#xff0c;很不利于用户体验的。如何修改这个问题呢&#xff1f;首先需要在struts.xml配置文件里添加下面一行代码&#xff1a; 1<consta…

ArcGIS10.8按属性选择中根据关键字like模糊查询方法总结

在实际工作中,通常需要按照某一个或某几个关键字进行模糊查询,已到达快速、准确、高效查询的目的。在ArcGIS中是通过SQL语句,利用关键字like来实现的。例如我们可以借助like快速查询满足以某一个关键字开头,以某一个关键字结尾,或者包含某一个关键字的结果。 在ArcGIS中,…

2021年复盘总结发现了C站博主缺少的赚钱之路

一、 我2021年的六大Flag 其实最开始我是不打算年终总结的&#xff0c;因为2021年我的十大Flag都没有完成&#xff0c;我说出来可能你会嘲笑我&#xff0c;所以我打算还是说出来吧。 这六大Flag如下&#xff1a; C站百万粉百篇实战文其他自媒体平台十万粉公众号一万粉财务自…

五大微信小程序开发IDE深度评测

微信小程序已经内测有一段时间了&#xff0c;笔者本着好奇加学习的心态写了几个小demo&#xff0c;虽然在MINA框架上并没有遇到太多的坑&#xff0c;但官方开发工具实在不敢恭维。 api提示不全&#xff0c;要一个个查api啊&#xff0c;写代码超级慢啊 很多必备的快捷键都没有&…

Maui的学习之路(2)--Mac窗体设置

Maui的学习之路今天是我开启Maui学习之路的第二天&#xff0c;我不是很高兴又能水一篇文章&#xff0c;我只能说这文章真好水。话不多说&#xff0c;我们进入正题&#xff0c;昨天解决了Windows下TitleBar以及窗体大小的问题&#xff0c;今天同样的问题&#xff0c;在Mac上又要…

Android之靠谱的Activity从底部向上弹出,finish从顶部向下消失(不黑屏)

1 、需求 要求Activity从底部向上弹出,finish从顶部向下消失(不黑屏) 2、解决办法 准备3个动画xml文件 app_bottom_in.xml <?xml version="1.0" encoding="utf-8"?> <set xmlns:android="http://schemas.android.com/apk/res/andro…

ArcGIS10.8中如何获取线状、面状数据的折点,并计算折点坐标?

如下图所示为面状要素,ArcGIS10.8中如何获取线状和面状数据的折点(起点、终点、中点、端点),并计算折点的坐标(X,Y,Z,M)? 下图所示为线状(Polyline)和面状(Polygon)要素的起点、终点和折点的示意图。

Linux命令大总结(早期学习时的笔记)

Linux命令大总结 ------------------------------------------------------------------------------------ 开机自启动命令行模式和图形模式&#xff1a; vi /etc/inittab 改3为命令行模式 改5为图形模式 开关机命令&#xff1a; 关机 init 0 shtudown -h now 重启…

[转]Cordova + Ionic in Visual Studio - 101 Tutorial [Part I]

本文转自&#xff1a;http://binarylies.ghost.io/cordova-ionic-in-visual-studio/ Hi everyone, I thought about lending a hand to all the people that are, as I have been recently, exploring Cordova and all its features for the first time. For the ones still tr…

【转】学会这13个原则写UI界面文案,用户才能秒懂

原文网址&#xff1a;http://www.niaogebiji.com/article-12011-1.html 摘要: 首先&#xff0c;在写UI文案之前&#xff0c;为了理清思路&#xff0c;要先搞清楚三个问题&#xff1a;我&#xff08;设计师&#xff09;想让用户做什么&#xff1f; – 我写文案的目的为什么要让用…

【前端就业课 第一阶段】HTML5 零基础到实战(一)基础代码结构详解

注意&#xff1a;手机&#xff08;APP&#xff09;打开&#xff0c;内容显示更佳&#xff0c;不会的私聊博主即可 想要拿代码或加入学习计划&#xff08;** 博主会监督你并且教你写文章 **&#xff09;的拉到最下面&#xff08;PC端Web打开&#xff09;加博主即可&#xff0c;目…

【框架篇】mvc、mvp、mvvm使用关系总结

MVC MVC全名是Model View Controller&#xff0c;是模型(model)&#xff0d;视图(view)&#xff0d;控制器(controller)的缩写&#xff0c;一种软件设计典范&#xff0c;用一种业务逻辑、数据、界面显示分离的方法组织代码&#xff0c;将业务逻辑聚集到一个部件里面&#xff0c…

Blazor University (26)路由 —— 通过代码导航

原文链接&#xff1a;https://blazor-university.com/routing/navigating-our-app-via-code/通过代码导航源代码[1]从 Blazor 访问浏览器导航是通过 NavigationManager 服务提供的。这可以使用 razor 文件中的 inject 或 CS 文件中的 [Inject] 属性注入到 Blazor 组件中。Navig…

Android之使用自定义华为扫描SDK扫描二维码和识别本地图片

1、需求 更具UI的设计实现扫描二维码和识别本地图片二维码功能。 zxing扫描二维码还可以,但是识别本地图片二维码功能效果太差,非常不理想,看了看多github很多zxing扩展的开源项目,识别本地图片二维码功能效果不乐观,有些甚至还有裁剪本地图片,还是不能识别,果断放弃zb…

Matlab R2016b简体中文版安装教程(附Matlab R2016b百度网盘下载地址)

下载的Matlab R2016b软件安装包(文末附有下载地址)目录如下所示: 安装过程: 1. 安装主程序R2016b_win64_dvd1.iso和R2016b_win64_dvd2.iso 由于目前大多数及其都是Win8或10系统,所以选中R2016b_win64_dvd1.iso,右键→Windows资源管理器打开。Win7系统可以安装好压软件之后…

深度学习String、StringBuffer、StringBuilder

相信String这个类是Java中使用得最频繁的类之一&#xff0c;并且又是各大公司面试喜欢问到的地方&#xff0c;今天就来和大家一起学习一下String、StringBuilder和StringBuffer这几个类&#xff0c;分析它们的异同点以及了解各个类适用的场景。下面是本文的目录大纲&#xff1a…

Leetcode之打印链接的倒数第K个节点

1 问题 打印链表倒数第K个节点值。 2 代码实现 #include<stdio.h>//定义一个Node结构体,里面包含了value值和保存了下一个Node的指针(地址) typedef struct Node {int value;Node *next; } Node;//打印链表所有的值,循环遍历一次,因为链表节点的最后一个节点肯定是…

MySQL5.5多实例编译安装——mysqld_multi

一、MySQL多实例简介 MySQL多实例&#xff0c;简单地说&#xff0c;就是在一台服务器上同时开启多个不同的服务端口&#xff08;如&#xff1a;3306、3307&#xff09;&#xff0c;同时运行多个MySQL服务进程&#xff0c;这些服务进程通过不同的socket监听来自不同的端口来提供…

【前端就业课 第一阶段】HTML5 零基础到实战(二)超链接

注意&#xff1a;手机&#xff08;APP&#xff09;打开&#xff0c;内容显示更佳&#xff0c;不会的私聊博主即可 想要拿代码或加入学习计划&#xff08;** 博主会监督你并且教你写文章 **&#xff09;的拉到最下面&#xff08;PC端Web打开&#xff09;加博主即可&#xff0c;目…