【深度学习】【风格迁移】Zero-shot Image-to-Image Translation

论文:https://arxiv.org/abs/2302.03027
代码:https://github.com/pix2pixzero/pix2pix-zero/tree/main

文章目录

  • Abstract
  • 1. Introduction
  • 相关工作
  • 3. Method

Abstract

大规模文本到图像生成模型展示了它们合成多样且高质量图像的显著能力。然而,直接将这些模型应用于编辑真实图像仍然存在两个挑战。首先,用户很难提供完美的文本提示,准确描述输入图像中的每个视觉细节。其次,尽管现有模型可以在某些区域引入期望的改变,但它们通常会在不需要编辑的区域引入意想不到的变化,从而大幅改变输入内容。在这项工作中,我们提出了pix2pix-zero,一种图像到图像的转换方法,可以在没有手动提示的情况下保留原始图像的内容。我们首先自动发现反映文本嵌入空间中所需编辑的编辑方向。为了在编辑后保留一般内容结构,我们进一步提出了交叉注意力引导,旨在在扩散过程中保留输入图像的交叉注意力图。此外,我们的方法不需要对这些编辑进行额外的训练,可以直接使用现有的预训练文本到图像扩散模型。我们进行了大量实验证明,我们的方法在真实和合成图像编辑方面优于现有和同时进行的工作。

图1:我们提出了pix2pix-zero,这是一种基于扩散的图像到图像转换方法,允许用户即时指定编辑方向(例如,猫 → 狗)。我们在真实图像(上方2行)和合成图像(底部行)上执行各种翻译任务,同时保留输入图像的结构。我们的方法既不需要为每个输入图像手动进行文本提示,也不需要为每个任务进行昂贵的微调。

在这里插入图片描述

1. Introduction

最近的文本到图像扩散模型,如DALL·E 2 [43]、Imagen [51]和Stable Diffusion [47],生成具有复杂对象和场景的多样化、逼真的合成图像,展示了强大的组合能力。

然而,将这些模型重新用于编辑真实图像仍然具有挑战性。

首先,图像并不自然地附带文本描述。指定一个文本描述是繁琐且耗时的,因为一张图片价值千言万语,包含许多纹理细节、光照条件和形状微妙之处,在词汇表中可能没有对应的词语。其次,即使有初始和目标文本提示(例如,将猫改为狗),现有的文本到图像模型往往会合成完全新的内容,不符合输入图像的布局、形状和物体姿态。毕竟,编辑文本提示只告诉我们想要改变什么,但并未传达我们想要保留的内容。最后,用户可能希望对多样的真实图像执行各种编辑。因此,我们不希望为每个图像和编辑类型进行大规模的微调,因为这将带来极高的成本。

为了克服上述问题,我们引入了pix2pix-zero,一种基于扩散的图像到图像转换方法,无需训练和文本提示。

用户只需即时指定编辑方向,形式为源域 → 目标域(例如,猫 → 狗),无需为输入图像手动创建文本提示。我们的模型可以直接使用预训练的文本到图像扩散模型,无需为每个编辑类型和图像进行额外的训练。

在这项工作中,我们做出了两个关键贡献:(1) 高效的自动编辑方向发现机制,无需输入文本提示。我们自动发现适用于广泛输入图像的通用编辑方向。给定一个原始词(例如,猫)和一个编辑后的词(例如,狗),我们分别生成包含原始和编辑后词的两组句子。然后,我们计算两组句子之间的CLIP嵌入方向。由于该编辑方向基于多个句子,比仅仅在原始和编辑后词之间找到方向更加稳健。这一步仅需约5秒即可预先计算。(2) 通过交叉注意力引导进行内容保留。我们观察到交叉注意力图对应于生成物体的结构。为了保留原始结构,我们鼓励文本-图像交叉注意力图在转换前后保持一致。因此,我们在整个扩散过程中应用交叉注意力引导来强制实现这种一致性。在图1中,我们展示了使用我们的方法进行各种编辑的结果,同时保留输入图像的结构。

我们进一步通过一系列技术来改进结果并提高推断速度:(1) 自相关正则化:在应用DDIM [55]反转时,我们观察到DDIM反转容易使中间预测的噪声不太符合高斯分布,这降低了反转图像的可编辑性。因此,我们引入了自相关正则化,以确保在反转过程中噪声接近高斯分布。(2) 条件GAN蒸馏:由于多步推断的昂贵扩散过程,扩散模型较慢。为了实现交互式编辑,我们将扩散模型蒸馏为快速的条件GAN模型,给定来自扩散模型的原始和编辑后图像的配对数据,从而实现实时推断。

我们在各种图像到图像转换任务上演示了我们的方法,例如改变前景对象(猫 → 狗)、修改物体(在猫图像上添加眼镜)以及改变输入的风格(草图 → 油 pastel),用于真实图像和合成图像。

大量实验证明,pix2pix-zero在逼真性和内容保留方面优于现有和同时进行的作品[35, 22]。最后,我们对各个算法组件进行了广泛的剔除研究,并讨论了我们方法的限制。更多结果和相关代码请访问我们的网站https://pix2pixzero.github.io/。

相关工作

使用GAN进行深度图像编辑。随着生成建模的发展,图像编辑技术使用户可以以不同的方式表达他们的目标(例如,滑块、空间掩码或自然语言描述)。其中一类工作是训练条件GAN,将输入图像从一个域转换到目标域[28, 52, 71, 14, 61, 26, 39, 34, 5],这通常需要特定任务的模型训练。另一类编辑方法是通过图像反转来操纵GAN的潜在空间,并发现编辑方向[70, 27, 45, 69, 63, 7]。

这些方法首先将目标图像投影到预训练GAN模型的潜在空间,然后通过沿着与解缠结属性相对应的方向操纵潜在代码来编辑图像。许多先前的工作提出了对GAN模型进行微调以更好地匹配输入图像[8, 38, 46],探索不同的潜在空间[62, 1, 2],反转到多个层[19, 40],以及利用潜在编辑方向[21, 54, 41, 3]。尽管这些方法在单一类别的策划数据集上取得了成功,但在更复杂的图像上很难获得高质量的反转结果。

文本到图像模型。最近,大规模的文本到图像模型通过在互联网规模的文本-图像数据集上进行训练,显著提高了图像的质量和多样性[51, 43, 44, 64, 17, 18]。然而,在文本输入之外,它们对生成过程的控制能力有限。通过改变输入句子中的单词来编辑真实图像是不可靠的,因为它往往会以意外的方式改变图像的大部分内容。有些方法[37, 4]使用额外的掩码来约束编辑的应用位置。与这些方法不同,我们的方法保留了输入图像的结构,无需使用任何空间掩码。其他最近和同时进行的作品(例如,Palette [50],InstructPix2Pix [10],PITI [60])学习了针对图像到图像转换任务的条件扩散模型。相比之下,我们使用预训练的Stable Diffusion模型,无需进行额外的训练。

使用扩散模型进行图像编辑。最近的一些工作采用了扩散模型进行图像编辑。

SDEdit [35]通过在输入图像中添加噪声和用户编辑引导来进行编辑,然后去噪以增加其真实感。随后,它与文本到图像模型(例如GLIDE [37]和Stable Diffusion模型[47])一起用于基于文本的图像修复和编辑。其他方法[13, 56]提出了通过加入条件用户输入来修改扩散过程,但仅适用于单一类别的模型。

两个同时进行的工作,Imagic [30]和prompt-toprompt [22],也尝试使用预训练的文本到图像扩散模型进行结构保留的编辑。Imagic [30]展示了出色的编辑结果,但需要为每个图像微调整个模型。prompt-to-prompt [22]不需要微调,并使用原始图像的交叉注意力图(其值对应于编辑文本)来保留结构,主要关注合成图像的编辑。我们的方法在三个方面与它们不同。首先,我们的方法对输入图像不需要文本提示。其次,我们的方法更加稳健,因为我们不直接使用原始文本的交叉注意力图,这可能与编辑后的文本不兼容。我们的引导方法确保了编辑图像的交叉注意力图保持接近,但仍具有根据编辑文本进行变化的灵活性。

第三,我们的方法专门针对真实图像,同时对合成图像也有效。我们展示了我们的方法在图像质量和内容保留方面优于SDEdit和prompt-to-prompt。

3. Method

在这里插入图片描述

图3:pix2pix-zero方法的概述,通过一个猫→狗编辑示例进行说明。首先,我们使用正则化的DDIM反转获得一个反转的噪声图。这由文本嵌入c引导,文本嵌入c是使用图像字幕网络BLIP [33]和CLIP文本嵌入模型自动计算得到的。接着,我们通过原始文本嵌入对图像进行去噪,得到交叉注意力图,作为输入图像结构的参考(顶部行)。然后,我们通过编辑后的文本嵌入c + ∆cedit 进行去噪,使用损失函数鼓励交叉注意力图与参考交叉注意力图匹配(第2行)。这确保编辑后图像的结构与原始图像相比没有发生显著变化。第3行展示了没有交叉注意力引导的去噪结果,导致结构上的大幅偏离。

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/28330.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux项目部署

目录 一JAVAWeb环境的部署【安装JDK,MySQL数据库,Tomcat】 二.手工部署SpringBoot项目(写的最好的) 1.在IDEA中开发SpringBoot项目并打成jar包--点击右侧的Maven执行package命令 2.将jar包上传到Linux服务器 3.执行以下命令&a…

mysql的高级查询语句

目录 一、本文前言 二、高效查询方式 1)指定指字段进行查看 2)对字段进行去重查看 3)where条件查询 4)and 和 or 进行逻辑关系的增加 5)查询取值列表中的数据 6)between的引用 7)like…

NAT及其实验(eNSP,细致易懂)

目录 NAT产生背景 NAT概述NAT(Network Address Translation),网络地址转换 NAT工作规则 标准NAT技术 NAPT[网络地址端口转换[Port-->传输层-端口编号]] Easy IP——最简单的PAT NAT Server 静态NAT实验 动态NAT实验 NAPT实验 N…

Redis基础 (三十八)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、概述 1.1 NoSQL 1.2 Redis 二、安装 2.1 安装方式 : 三、目录结构 3.1 rpm -ql redis 3.2 /etc/redis.conf 主配置文件 3.3 /var/lib/redis …

【BMC】OpenBMC开发基础2:修改原有程序

修改原有程序 通常情况下我们会需要修改OpenBMC原有的程序来适配我们的项目,本节将介绍一般的流程。 为此首先我们需要了解devtool这个工具,注意它不是前端开发用的那个devtool,而是由OE(或者Yocto?)提供…

Android 实现 RecyclerView下拉刷新,SwipeRefreshLayout上拉加载

上拉、下拉的效果图如下&#xff1a; 使用步骤 1、在清单文件中添加依赖 implementation ‘com.android.support:recyclerview-v7:27.1.1’ implementation “androidx.swiperefreshlayout:swiperefreshlayout:1.0.0” 2、main布局 <LinearLayout xmlns:android"http…

Codeforces Round 891 (Div. 3)

Array ColoringArray Coloring 题目大意 题目要求判断是否可以将数组元素分为两种颜色&#xff0c;使得两种颜色元素的和具有相同的奇偶性&#xff0c;并且每种颜色至少有一个元素被着色。 思路分析 可以通过统计数组中奇数和偶数的个数来判断是否满足条件。分析可知&#x…

适用HarmonyOS 3.1版本及以上的应用及服务开发工具 DevEco Studio 3.1.1 Release 安装

文章目录 安装步骤1.下载安装包2.安装成功后&#xff0c;初次运行studio2.1 配置node与ohpm的环境2.2安装sdk2.3等待安装结束 3.创建项目3.1 点击Create Project3.2 选择一个空项目3.3 项目配置3.4 Finish、等待依赖下载完毕3.5 项目创建完成 tip 提示4.配置运行环境4.1 真机运…

信号平滑或移动平均滤波研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

springboot人事管理系统设计与实现

126springboot人事管理系统java web员工信息管理系统 人事管理系统&#xff0c;属于ERP的一个部分。它单指汇集成功企业先进的人力资源管理理念、人力资源管理实践、人力资源信息化系统建设的经验&#xff0c;以信息技术实现对企业人力资源信息的高度集成化管理&#xff0c;为…

ppt压缩文件怎么压缩最小?文件压缩技巧分享

在日常的工作和学习中&#xff0c;难免会遇到PPT太大&#xff0c;需要将其压缩变小的情况&#xff0c;但很多朋友还不知道怎么压缩PPT文件&#xff0c;下面就给大家分享几个简单的方法&#xff0c;分分钟缩小过大的PPT文件。 一、PowerPoint PowerPoint就是微软公司的演示文稿…

一、MySql前置知识

文章目录 一、什么是数据库&#xff08;一&#xff09;存储数据用文件就可以了&#xff0c;为什么还要弄个数据库?&#xff08;二&#xff09;数据库存储介质&#xff1a;&#xff08;三&#xff09;主流数据库 二、数据库基本操作&#xff08;一&#xff09;连接服务器&#…

SQL 相关子查询 和 不相关子查询、Exists 、Not Exists、 多表连接(包含自连接)

不相关子查询 子查询的查询条件不依赖于父查询&#xff0c;称不相关子查询。子查询可以单独运行的 select stu_id,sex,age from student t where sex(select sexfrom studentwhere stu_id10023 )相关子查询 关联子查询 子查询的查询条件依赖于父查询&#xff0c;称为 相关子…

数据结构刷题训练——链表篇(三)

目录 文章目录 前言 1. 题目一&#xff1a;环形链表Ⅱ 1.1 思路 1.2 分析 1.3 题解 1.4 方法二 2. 题目二&#xff1a;复制带随机指针的链表 2.1 思路 2.2 分析 2.3 题解 总结 前言 在这个专栏博客中&#xff0c;我们将提供丰富的题目资源和解题思路&#xff0c;帮助读者逐步提…

Flutter(八)事件处理与通知

1.原始指针事件处理 一次完整的事件分为三个阶段&#xff1a;手指按下、手指移动、和手指抬起&#xff0c;而更高级别的手势&#xff08;如点击、双击、拖动等&#xff09;都是基于这些原始事件的。 Listener 组件 Flutter中可以使用Listener来监听原始触摸事件 Listener({…

The Sandbox 与 D.OASIS 联手打造 D.OASIS 城市

我们非常高兴地宣布与 D.OASIS 建立合作伙伴关系&#xff0c;共同打造无与伦比的娱乐体验&#xff1a;The Sandbox 中的 D.OASIS 城市&#xff01; 作为合作的一部分&#xff0c;The Sandbox 和D.OASIS将共同打造 D.OASIS 城市&#xff0c;一座充满无限可能的大都市&#xff0…

TDengine + Telegraf + Grafana 实现图形化服务器状态监控

TDengine Telegraf Grafana 实现图形化服务器状态监控 技术栈环境搭建安装tdenginue下载安装包解压文件运行安装文件启动td运行 taosAdapter 安装Telegraf添加yum源安装生成配置文件修改配置文件启动telegraf 安装Grafana直接yum安装安装td数据源配置启动Grafana配置数据源导…

CentOS 7中,配置了Oracle jdk,但是使用java -version验证时,出现的版本是OpenJDK,如何解决?

1.首先&#xff0c;检查已安装的jdk版本 sudo yum list installed | grep java2.移除、卸载圈红的系统自带的openjdk sudo yum remove java-1.7.0-openjdk.x86_64 sudo yum remove java-1.7.0-openjdk-headless.x86_64 sudo yum remove java-1.8.0-openjdk.x86_64 sudo yum r…

安卓:MMKV——键值存储库

目录 一、MMKV介绍 1.特点和优势&#xff1a; 2.使用指南&#xff1a; 3.依赖包&#xff1a; 二、MMKV的常用方法 1、初始化和获取实例&#xff1a; 2、存储数据&#xff1a; 3、读取数据 4、删除数据 5、其他操作&#xff1a; 三、MMKV的使用例子 MainActivity&#xff…

文件上传漏洞(webshell)

一、防护 1、防护 1、判断文件后缀&#xff0c;为图片的话才让上传成功。 2、解析文件内容&#xff08;文件幻数&#xff09;判断文件头和文件尾部是否一致 幻数 常见的 3、隐藏按钮&#xff08;带上code唯一值&#xff09; 4、二次渲染&#xff08;类似拿着你的图片&#xff…