PyTorch实现多输入输出通道的卷积操作

本文通过代码示例详细讲解如何在PyTorch中实现多输入通道和多输出通道的卷积运算,并对比传统卷积与1x1卷积的实现差异。


1. 多输入通道互相关运算

当输入包含多个通道时,卷积核需要对每个通道分别进行互相关运算,最后将结果相加。以下是实现代码:

import torch
from d2l import torch as d2ldef corr2d_multi_in(X, K):return sum(d2l.corr2d(x, k) for x, k in zip(X, K))

验证输出
输入一个2通道的3x3张量和一个2通道的2x2卷积核,输出结果为2x2张量:

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])print(corr2d_multi_in(X, K))

输出结果:

tensor([[ 56.,  72.],[104., 120.]])

2. 多输出通道互相关运算

通过堆叠多个卷积核,可以实现多输出通道。以下代码展示了如何生成3个输出通道:

def corr2d_multi_in_out(X, K):return torch.stack([corr2d_multi_in(X, k) for k in K], 0)K = torch.stack((K, K+1, K+2), 0)  # 堆叠3个卷积核
print("卷积核形状:", K.shape)

输出结果:

卷积核形状: torch.Size([3, 2, 2, 2])

运行多通道卷积:

print(corr2d_multi_in_out(X, K))

输出结果:

tensor([[[ 56.,  72.],[104., 120.]],[[ 76., 100.],[148., 172.]],[[ 96., 128.],[192., 224.]]])

3. 1x1卷积的优化实现

1x1卷积可通过矩阵乘法高效实现,尤其适用于通道维度调整。以下是对比传统卷积与1x1卷积的代码:

def corr2d_multi_in_out_1x1(X, K):c_i, h, w = X.shapec_o = K.shape[0]X = X.reshape((c_i, h * w))       # 展平空间维度K = K.reshape((c_o, c_i))        # 展平卷积核Y = torch.matmul(K, X)           # 矩阵乘法return Y.reshape((c_o, h, w))    # 恢复形状# 生成随机输入和卷积核
X = torch.normal(0, 1, (3, 3, 3))    # 3通道3x3输入
K = torch.normal(0, 1, (2, 3, 1, 1)) # 2输出通道的1x1卷积核# 验证两种方法结果一致
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6  # 误差极小

总结

  • 多输入通道:对每个通道独立进行卷积后求和。

  • 多输出通道:通过堆叠多个卷积核实现不同输出。

  • 1x1卷积:本质是通道间的线性组合,可通过矩阵乘法高效实现。

通过上述代码示例,读者可以深入理解多通道卷积的实现原理,并掌握优化技巧。


注意:运行代码需安装PyTorch和d2l库。完整代码请参考文中示例。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/901032.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入解析 MySQL 中的日期时间函数:DATE_FORMAT 与时间查询优化、DATE_ADD、CONCAT

深入解析 MySQL 中的日期时间函数&#xff1a;DATE_FORMAT 与时间查询优化 在数据库管理和应用开发中&#xff0c;日期和时间的处理是不可或缺的一部分。MySQL 提供了多种日期和时间函数来满足不同的需求&#xff0c;其中DATE_FORMAT函数以其强大的日期格式化能力&#xff0c;…

SSH配置优化:提升本地内网Linux服务器远程连接速度与稳定性

文章目录 引言一. 理解SSH连接过程与影响因素二. 服务器端SSH配置优化三. 客户端SSH配置优化四. 高级技巧五. 内网穿透突破公网IP限制总结 引言 SSH (Secure Shell) 是一种网络协议&#xff0c;用于加密的网络服务&#xff0c;常用于远程登录和管理Linux服务器。对于本地内网的…

BERT - MLM 和 NSP

本节代码将实现BERT模型的两个主要预训练任务&#xff1a;掩码语言模型&#xff08;Masked Language Model, MLM&#xff09; 和 下一句预测&#xff08;Next Sentence Prediction, NSP&#xff09;。 1. create_nsp_dataset 函数 这个函数用于生成NSP任务的数据集。 def cr…

“实时滚动”插件:一个简单的基于vue.js的无缝滚动

1、参考连接&#xff1a; 安装 | vue-seamless-scroll 2、使用步骤&#xff1a; 第一步&#xff1a;安装 yarn add vue-seamless-scroll 第二步&#xff1a;引入 import vueSeamlessScroll from vue-seamless-scroll/src 第三步&#xff1a;注册 components: { vueSeamless…

【蓝桥杯】赛前练习

1. 排序 import os import sysn=int(input()) data=list(map(int,input().split(" "))) data.sort() for d in data:print(d,end=" ") print() for d in data[::-1]:print(d,end=" ")2. 走迷宫BFS import os import sys from collections import…

pyTorch-迁移学习-学习率衰减-四种天气图片多分类问题

目录 1.导包 2.加载数据、拼接训练、测试数据的文件夹路径 3.数据预处理 3.1 transforms.Compose数据转化 3.2分类存储的图片数据创建dataloader torchvision.datasets.ImageFolder torch.utils.data.DataLoader 4.加载预训练好的模型(迁移学习) 4.1固定、修改预训练…

第十四届蓝桥杯大赛软件赛国赛Python大学B组题解

文章目录 弹珠堆放划分偶串交易账本背包问题翻转最大阶梯最长回文前后缀贸易航线困局 弹珠堆放 递推式 a i a i − 1 i a_ia_{i-1}i ai​ai−1​i&#xff0c; n 20230610 n20230610 n20230610非常小&#xff0c;直接模拟 答案等于 494 494 494 划分 因为总和为 1 e 6 1e6…

Python 和 JavaScript两种语言的相似部分-由DeepSeek产生

Python 和 JavaScript 作为两种流行的编程语言&#xff0c;虽然在设计目标和应用场景上有差异&#xff08;Python 偏向后端和脚本&#xff0c;JavaScript 偏向前端和动态交互&#xff09;&#xff0c;但它们的语法存在许多相似之处。以下是两者在语法上的主要共同点及对比&…

改善 Maven 的依赖性

大家好&#xff0c;这里是架构资源栈&#xff01;点击上方关注&#xff0c;添加“星标”&#xff0c;一起学习大厂前沿架构&#xff01; 建议使用mvn dependency:analyze命令来摆脱已声明但未使用的依赖项&#xff1a; 还有另一个用例&#xff0c; mvn dependency:analyze 它可…

【SQL】子查询详解(附例题)

子查询 子查询的表示形式为&#xff1a;(SELECT 语句)&#xff0c;它是IN、EXISTS等运算符的运算数&#xff0c;它也出现于FROM子句和VALUES子句。包含子查询的查询叫做嵌套查询。嵌套查询分为相关嵌套查询和不想关嵌套查询 WHERE子句中的子查询 比较运算符 子查询的结果是…

Stable Diffusion 扩展知识实操整合

本文的例子都是基于秋叶整合包打开的webui实现的 一、ADetailer——改善人脸扭曲、恶心 After detailer插件可以自动检测生成图片的人脸&#xff0c;针对人脸自动上蒙版&#xff0c;自动进行重绘&#xff0c;整个流程一气呵成&#xff0c;因此可以避免许多重复的操作。除此之…

freertos内存管理简要概述

概述 内存管理的重要性 在嵌入式系统中&#xff0c;内存资源通常是有限的。合理的内存管理可以确保系统高效、稳定地运行&#xff0c;避免因内存泄漏、碎片化等问题导致系统崩溃或性能下降。FreeRTOS 的内存管理机制有助于开发者灵活地分配和释放内存&#xff0c;提高内存利用…

按规则批量修改文件扩展名、删除扩展名或添加扩展名

文件的扩展名是多种多样的&#xff0c;有些不同文件的扩展名之间相互是可以直接转换的。我们工作当中最常见的就是 doc 与 docx、xls 与 xlsx、jpg 与 jpeg、html 与 htm 等等&#xff0c;这些格式在大部分场景下都是可以相互转换 能直接兼容的。我们今天要介绍的就是如何按照一…

热门面试题第15天|最大二叉树 合并二叉树 验证二叉搜索树 二叉搜索树中的搜索

654.最大二叉树 力扣题目地址(opens new window) 给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下&#xff1a; 二叉树的根是数组中的最大元素。左子树是通过数组中最大值左边部分构造出的最大二叉树。右子树是通过数组中最大值右边部分构造出的最大…

MySQL学习笔记7【InnoDB】

Innodb 1. 架构 1.1 内存部分 buffer pool 缓冲池是主存中的第一个区域&#xff0c;里面可以缓存磁盘上经常操作的真实数据&#xff0c;在执行增删查改操作时&#xff0c;先操作缓冲池中的数据&#xff0c;然后以一定频率刷新到磁盘&#xff0c;这样操作明显提升了速度。 …

RNN、LSTM、GRU汇总

RNN、LSTM、GRU汇总 0、论文汇总1.RNN论文2、LSTM论文3、GRU4、其他汇总 1、发展史2、配置和架构1.配置2.架构 3、基本结构1.神经元2.RNN1. **RNN和前馈网络区别&#xff1a;**2. 计算公式&#xff1a;3. **梯度消失:**4. **RNN类型**:&#xff08;查看发展史&#xff09;5. **…

django数据迁移操作受阻

错误信息&#xff1a; django.db.utils.OperationalError: (1227, Access denied; you need (at least one of) the SYSTEM_VARIABLES_ADMIN or SESSION_VARIABLES_ADMIN privilege(s) for this operation)根据错误信息分析&#xff0c;该问题是由于MySQL用户 缺乏SYSTEM_VARI…

WinForm真入门(13)——ListBox控件详解

WinForm ListBox 详解与案例 一、核心概念 ‌ListBox‌ 是 Windows 窗体中用于展示可滚动列表项的控件&#xff0c;支持单选或多选操作&#xff0c;适用于需要用户从固定数据集中选择一项或多项的场景‌。 二、核心属性 属性说明‌Items‌管理列表项的集合&#xff0c;支持动…

局域网内文件共享的实用软件推荐

软件介绍 在日常办公、学习或家庭网络环境里&#xff0c;局域网内文件共享是个常见需求。有一款免费的局域网共享软件非常适合这种场景。 这款局域网共享软件使用起来非常简单&#xff0c;不需要安装&#xff0c;直接点击就能使用。 它的操作流程简单易懂&#xff0c;用户只要…

ViewModel vs AndroidViewModel:核心区别与使用场景详解

在 Android 的 MVVM 架构中&#xff0c;ViewModel 和 AndroidViewModel 都是用于管理 UI 相关数据的组件&#xff0c;但二者有一些关键区别&#xff1a; 1. ViewModel 基本用途&#xff1a;用于存储和管理与 UI 相关的数据&#xff0c;生命周期与 Activity/Fragment 解耦&…