LeNet卷积神经网络-笔记

LeNet卷积神经网络-笔记

在这里插入图片描述
手写分析LeNet网三卷积运算和两池化加两全连接层计算分析
在这里插入图片描述
修正上图中H,W的计算公式为下面格式
在这里插入图片描述

基于paddle飞桨框架构建测试代码

#输出结果为:
#[validation] accuracy/loss: 0.9530/0.1516
#这里准确率为95.3%
#通过运行结果可以看出,LeNet在手写数字识别MNIST验证数据集上的准确率高达92%以上。

详细源代码如下所示:

# 导入需要的包
import paddle
import numpy as np
from paddle.nn import Conv2D, MaxPool2D, Linear## 组网
import paddle.nn.functional as F# 定义 LeNet 网络结构
#==============================================================================
class LeNet(paddle.nn.Layer):def __init__(self, num_classes=1):super(LeNet, self).__init__()# 创建卷积和池化层# 创建第1个卷积层self.conv1 = Conv2D(in_channels=1, out_channels=6, kernel_size=5)self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)# 尺寸的逻辑:池化层未改变通道数;当前通道数为6# 创建第2个卷积层self.conv2 = Conv2D(in_channels=6, out_channels=16, kernel_size=5)self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)# 创建第3个卷积层self.conv3 = Conv2D(in_channels=16, out_channels=120, kernel_size=4)# 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W]# 输入size是[28,28],经过三次卷积和两次池化之后,C*H*W等于120self.fc1 = Linear(in_features=120, out_features=64)# 创建全连接层,第一个全连接层的输出神经元个数为64, 第二个全连接层输出神经元个数为分类标签的类别数self.fc2 = Linear(in_features=64, out_features=num_classes)# 网络的前向计算过程def forward(self, x):x = self.conv1(x)# 每个卷积层使用Sigmoid激活函数,后面跟着一个2x2的池化x = F.sigmoid(x)x = self.max_pool1(x)x = F.sigmoid(x)x = self.conv2(x)x = self.max_pool2(x)x = self.conv3(x)# 尺寸的逻辑:输入层将数据拉平[B,C,H,W] -> [B,C*H*W]x = paddle.reshape(x, [x.shape[0], -1])x = self.fc1(x)x = F.sigmoid(x)x = self.fc2(x)return x
#==========================================================================================
# 输入数据形状是 [N, 1, H, W]
# 这里用np.random创建一个随机数组作为输入数据
x = np.random.randn(*[3,1,28,28])
x = x.astype('float32')# 创建LeNet类的实例,指定模型名称和分类的类别数目
model = LeNet(num_classes=10)
# 通过调用LeNet从基类继承的sublayers()函数,
# 查看LeNet中所包含的子层
print(model.sublayers())
print(x.shape)
x = paddle.to_tensor(x)
print(x.shape)
for item in model.sublayers():# item是LeNet类中的一个子层# 查看经过子层之后的输出数据形状try:x = item(x)except:x = paddle.reshape(x, [x.shape[0], -1])x = item(x)if len(item.parameters())==2:# 查看卷积和全连接层的数据和参数的形状,# 其中item.parameters()[0]是权重参数w,item.parameters()[1]是偏置参数bprint(item.full_name(), x.shape, item.parameters()[0].shape, item.parameters()[1].shape)else:# 池化层没有参数print(item.full_name(), x.shape)  
#
'''
#显示子图层列表model.sublayers()
[Conv2D(1, 6, kernel_size=[5, 5], data_format=NCHW), MaxPool2D(kernel_size=2, stride=2, padding=0), Conv2D(6, 16, kernel_size=[5, 5], data_format=NCHW), MaxPool2D(kernel_size=2, stride=2, padding=0), Conv2D(16, 120, kernel_size=[4, 4], data_format=NCHW), Linear(in_features=120, out_features=64, dtype=float32), Linear(in_features=64, out_features=10, dtype=float32)
]
'''    # -*- coding: utf-8 -*-
# LeNet 识别手写数字
import os
import random
import paddle
import numpy as np
import paddle
from paddle.vision.transforms import ToTensor
from paddle.vision.datasets import MNIST# 定义训练过程
def train(model, opt, train_loader, valid_loader):# 开启0号GPU训练use_gpu = Truepaddle.device.set_device('gpu:0') if use_gpu else paddle.device.set_device('cpu')print('start training ... ')model.train()for epoch in range(EPOCH_NUM):for batch_id, data in enumerate(train_loader()):img = data[0]label = data[1] # 计算模型输出logits = model(img)# 计算损失函数loss_func = paddle.nn.CrossEntropyLoss(reduction='none')loss = loss_func(logits, label)avg_loss = paddle.mean(loss)if batch_id % 2000 == 0:print("epoch: {}, batch_id: {}, loss is: {:.4f}".format(epoch, batch_id, float(avg_loss.numpy())))avg_loss.backward()opt.step()opt.clear_grad()model.eval()accuracies = []losses = []for batch_id, data in enumerate(valid_loader()):img = data[0]label = data[1] # 计算模型输出logits = model(img)pred = F.softmax(logits)# 计算损失函数loss_func = paddle.nn.CrossEntropyLoss(reduction='none')loss = loss_func(logits, label)acc = paddle.metric.accuracy(pred, label)accuracies.append(acc.numpy())losses.append(loss.numpy())print("[validation] accuracy/loss: {:.4f}/{:.4f}".format(np.mean(accuracies), np.mean(losses)))model.train()# 保存模型参数paddle.save(model.state_dict(), 'mnist_LeNet.pdparams')# 创建模型
model = LeNet(num_classes=10)
# 设置迭代轮数
EPOCH_NUM = 5
# 设置优化器为Momentum,学习率为0.001
opt = paddle.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameters=model.parameters())
# 定义数据读取器
train_loader = paddle.io.DataLoader(MNIST(mode='train', transform=ToTensor()), batch_size=10, shuffle=True)
valid_loader = paddle.io.DataLoader(MNIST(mode='test', transform=ToTensor()), batch_size=10)
# 启动训练过程
train(model, opt, train_loader, valid_loader)#输出结果为:
#[validation] accuracy/loss: 0.9530/0.1516
#这里准确率为95.3%
#通过运行结果可以看出,LeNet在手写数字识别MNIST验证数据集上的准确率高达92%以上。  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/27757.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Stable Diffusion - Style Editor 和 Easy Prompt Selector 提示词插件配置

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132122450 Stable Diffusion 的 Prompt 的功能,可以用文字来描述想要生成的图像,根据输入来创造出逼真的图像。Prompt 支持…

Python 面试必知必会(一):数据结构

《Python Cookbook》的作者David Beazley的课程PPT开源了,目标用户是希望从编写基础脚本过渡到编写更复杂程序的高级 Python 程序员,课程主题侧重于流行库和框架中使用的编程技术,主要目的是更好地理解 Python 语言本身,以便阅读他…

【深度学习】采用自动编码器生成新图像

一、说明 你知道什么会很酷吗?如果我们不需要所有这些标记的数据来训练 我们的模型。我的意思是标记和分类数据需要太多的工作。 不幸的是,大多数现有模型从支持向量机到卷积神经网,没有它们,卷积神经网络就无法训练。无监督学习不…

【Kubernetes】资源管理方法

目录 陈述式资源管理方法: 查看版本信息 查看资源对象简写 查看集群信息 配置kubectl自动补全 node节点查看日志 基本信息查看 查看 master 节点状态 查看命名空间 查看default命名空间的所有资源 创建命名空间app 删除命名空间app 描述某个资源的详细…

中断子系统--硬件层(GICv3)

目录 综述 硬件层--GICV3 中断类型 中断状态 Distributor组件 中断使能配置 中断触发方式配置 中断优先级配置  中断分组标记 GIC处理中断流程 综述 由上面的block图,我们可知linux kernel的中断子系统分成4个部分: 硬件层:最下层…

AP2400 LED汽车摩灯照明电源驱动 过EMC DC-DC降压恒流IC

产品特点 宽输入电压范围:5V~100V 可设定电流范围:10mA~6000mA 固定工作频率:150KHZ 内置抖频电路,降低对其他设备的 EMI干扰 平均电流模式采样,恒流精度更高 0-100%占空比控制&#xff0…

连续四年入选!三项荣耀!博云科技强势上榜Gartner ICT技术成熟度曲线

日,全球知名咨询公司Gartner发布了2023年度的《中国ICT技术成熟度曲线》(《Hype Cycle for ICT in China, 2023》,以下简称“报告”)。令人瞩目的是,博云科技在报告中荣获三项殊荣,入选云原生计算&#xff…

SQL面试题:第二个优化案例

今天继续给大家分享一个 SQL 优化案例。 问题描述 已知表结构如下: CREATE TABLE customer ( C_CUSTKEY int NOT NULL, C_NAME varchar(25) NOT NULL, C_ADDRESS varchar(40) NOT NULL, C_NATIONKEY int NOT NULL, C_PHONE char(15) NOT NULL, C_ACCTBAL decimal…

揭秘bi数据分析系统:如何轻松掌握商业智能的秘密

在大数据时代的背景下,企业开始越来越重视数据分析的重要性。bi数据分析系统不仅可以帮助企业感知市场变化趋势,还可以实时监测并评估企业经营决策的效果,支持企业的持续发展。在国内,国产数据处理工具如瓴羊Quick BI等崛起&#…

Neety与IO模型简介

Netty与IO模型简介 1、Netty 是由 JBOSS 提供的一个 Java 开源框架,现为 Github 上的独立项目。 2、Netty 是一个异步的、基于事件驱动的网络应用框架,用以快速开发高性能、高可靠性的网络 IO 程序。 3、Netty 主要针对在 TCP 协议下,面向…

2023-08-07力扣今日四题-好题

链接: 剑指 Offer 03. 数组中重复的数字 题意: 如题 解: 看到一个很牛的时间复杂度O(n)的原地算法:由于数组长度n,数组内只有0到n-1,那么,我们用对应-n到-1表示nums[index]出现过一次&…

【android】mac mini m2安装android studio

文章目录 一、环境搭建1.1 安装路径1.2 mac arm1.3 安装android studio 二、安装sdk三、更新sdk3.1 关闭代理3.2 重新更新sdk 四、更新api五、项目创建六、gradle安装七、avd八、问题:build tools缺失九、编译运行小结 一、环境搭建 1.1 安装路径 windows&#xf…

高温老化房软件使用教程

高温老化炉软件通常具有以下几个模块: 1. 参数设置模块:该模块用于设置高温老化炉的相关参数,包括温度、时间、压力等。用户可以通过输入框、滑动条或下拉菜单等方式设定参数,并将参数发送给高温老化炉。 2. 监控模块:…

Ansible环境搭建,CentOS 系列操作系统搭建Ansible集群环境

Ansible是一种自动化工具,基于Python写的,原理什么的就不过多再说了,详情参考:https://www.itwk.cc/post/403.html https://blog.csdn.net/qq_34185638/article/details/131079320?spm1001.2014.3001.5502 环境准备 HOSTNAMEIP…

CAD绘制法兰、添加光源、材质并渲染

首先绘制两个圆柱体,相互嵌套 在顶部继续绘制圆柱体,这是之后要挖掉的部分 在中央位置绘制正方形 用圆角工具: 将矩形的四个角分别处理,效果: 用拉伸工具 向上拉伸到和之前绘制的圆柱体高度齐平 绘制一个圆柱体&#…

VUE框架:vue2转vue3全面细节总结(2)导航守卫

大家好,我是csdn的博主:lqj_本人 这是我的个人博客主页: lqj_本人_python人工智能视觉(opencv)从入门到实战,前端,微信小程序-CSDN博客 最新的uniapp毕业设计专栏也放在下方了: https://blog.csdn.net/lbcy…

laravel项目运行问题记录

一.首页404未找到 检查项目配置是否配置好 解决地址:phpstudy网站或站点创建成功,打开无响应_php打开提示站点创建成功_荒-漠的博客-CSDN博客 二.vendor目录不存在 composer未安装 解决地址:laravel安装composer依赖_荒-漠的博客-CSDN博客 三.首页可以展示 里面路径404 未配…

Adobe ColdFusion 反序列化漏洞复现(CVE-2023-29300)

0x01 产品简介 Adobe ColdFusion是美国奥多比(Adobe)公司的一套快速应用程序开发平台。该平台包括集成开发环境和脚本语言。 0x02 漏洞概述 Adobe ColdFusion存在代码问题漏洞,该漏洞源于受到不受信任数据反序列化漏洞的影响,攻击…

C# App.config和Web.config加密

步骤1:创建加密命令 使用ASP.NET提供的命令工具aspnet_regiis来创建加密命令。 1、打开控制台窗口,在命令行中输入以下命令: cd C:\Windows\Microsoft.NET\Framework\v4.xxxxx aspnet_regiis.exe -pef connectionStrings "C:\MyAppFo…

C#,OpenCV开发指南(01)

C#,OpenCV开发指南(01) 一、OpenCV的安装1、需要安装两个拓展包:OpenCvSharp4和OpenCvSharp4.runtime.win 二、C#使用OpenCV的一些代码1、需要加头文件2、读取图片3、在图片上画矩形框4、 在图片上画直线 一、OpenCV的安装 1、需…