前端算法排序

文章目录

    • 一、冒泡排序
    • 二、快速排序
    • 三、选择排序
    • 四、插入排序
    • 五、计算排序
    • 六、归并排序
    • 七、希尔排序
    • 八、堆排序
    • 九、桶排序
    • 十、基数排序


一、冒泡排序

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

算法步骤

  • 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  • 针对所有的元素重复以上的步骤,除了最后一个。
  • 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

function bubbleSort(arr) {var len = arr.length;for (var i = 0; i < len; i++) {for (var j = 0; j < len - 1 - i; j++) {if (arr[j] > arr[j+1]) {        //相邻元素两两对比var temp = arr[j+1];        //元素交换arr[j+1] = arr[j];arr[j] = temp;}}}return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(bubbleSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

二、快速排序

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

实现

  • 从数列中挑出一个元素,称为 “基准”(pivot);
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
/*方法说明:快速排序
@param  array 待排序数组*/
//方法一
function quickSort(array, left, right) {if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' && typeof left === 'number' && typeof right === 'number') {if (left < right) {var x = array[right], i = left - 1, temp;for (var j = left; j <= right; j++) {if (array[j] <= x) {i++;temp = array[i];array[i] = array[j];array[j] = temp;}}quickSort(array, left, i - 1);quickSort(array, i + 1, right);}return array;} else {return 'array is not an Array or left or right is not a number!';}
}//方法二
var quickSort2 = function(arr) {if (arr.length <= 1) {return arr;}const pivotIndex = Math.floor(arr.length / 2);const pivot = arr[pivotIndex];const less = [];const greater = [];for (let i = 0; i < arr.length; i++) {if (i === pivotIndex) {continue;}if (arr[i] < pivot) {less.push(arr[i]);} else {greater.push(arr[i]);}}return [...quickSort2(less), pivot, ...quickSort2(greater)];
};var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(quickSort(arr,0,arr.length-1));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
console.log(quickSort2(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

算法分析
最佳情况:T(n) = O(nlogn)
最差情况:T(n) = O(n2)
平均情况:T(n) = O(nlogn)

三、选择排序

选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

步骤

  • 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
  • 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  • 重复第二步,直到所有元素均排序完毕。
function selectionSort(arr) {var len = arr.length;var minIndex, temp;console.time('选择排序耗时');for (var i = 0; i < len - 1; i++) {minIndex = i;for (var j = i + 1; j < len; j++) {if (arr[j] < arr[minIndex]) {     //寻找最小的数minIndex = j;                 //将最小数的索引保存}}temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}console.timeEnd('选择排序耗时');return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(selectionSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

算法分析
最佳情况:T(n) = O(n2)
最差情况:T(n) = O(n2)
平均情况:T(n) = O(n2)

四、插入排序

插入排序(Insertion-Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

步骤

  • 从第一个元素开始,该元素可以认为已经被排序;
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  • 将新元素插入到该位置后;
  • 重复步骤2~5。
function insertionSort(array) {if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {console.time('插入排序耗时:');for (var i = 1; i < array.length; i++) {var key = array[i];var j = i - 1;while (j >= 0 && array[j] > key) {array[j + 1] = array[j];j--;}array[j + 1] = key;}console.timeEnd('插入排序耗时:');return array;} else {return 'array is not an Array!';}
}

算法分析
最佳情况:输入数组按升序排列。T(n) = O(n)
最坏情况:输入数组按降序排列。T(n) = O(n2)
平均情况:T(n) = O(n2)

五、计算排序

计数排序(Counting sort)是一种稳定的排序算法。计数排序使用一个额外的数组C,其中第i个元素是待排序数组A中值等于i的元素的个数。然后根据数组C来将A中的元素排到正确的位置。它只能对整数进行排序。
步骤

  • 找出待排序的数组中最大和最小的元素;
  • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
  • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
  • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。
function countingSort(array) {var len = array.length,B = [],C = [],min = max = array[0];console.time('计数排序耗时');for (var i = 0; i < len; i++) {min = min <= array[i] ? min : array[i];max = max >= array[i] ? max : array[i];C[array[i]] = C[array[i]] ? C[array[i]] + 1 : 1;}for (var j = min; j < max; j++) {C[j + 1] = (C[j + 1] || 0) + (C[j] || 0);}for (var k = len - 1; k >= 0; k--) {B[C[array[k]] - 1] = array[k];C[array[k]]--;}console.timeEnd('计数排序耗时');return B;

算法分析
当输入的元素是n 个0到k之间的整数时,它的运行时间是 O(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。

最佳情况:T(n) = O(n+k)
最差情况:T(n) = O(n+k)
平均情况:T(n) = O(n+k)

六、归并排序

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

步骤

  • 把长度为n的输入序列分成两个长度为n/2的子序列;
  • 对这两个子序列分别采用归并排序;
  • 将两个排序好的子序列合并成一个最终的排序序列。

function mergeSort(arr) {  //采用自上而下的递归方法var len = arr.length;if(len < 2) {return arr;}var middle = Math.floor(len / 2),left = arr.slice(0, middle),right = arr.slice(middle);return merge(mergeSort(left), mergeSort(right));
}function merge(left, right)
{var result = [];console.time('归并排序耗时');while (left.length && right.length) {if (left[0] <= right[0]) {result.push(left.shift());} else {result.push(right.shift());}}while (left.length)result.push(left.shift());while (right.length)result.push(right.shift());console.timeEnd('归并排序耗时');return result;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(mergeSort(arr));

算法分析
最佳情况:T(n) = O(n)
最差情况:T(n) = O(nlogn)
平均情况:T(n) = O(nlogn)

七、希尔排序

希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版》的合著者Robert Sedgewick提出的。
步骤
先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

  • 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  • 按增量序列个数k,对序列进行k 趟排序;
  • 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
function shellSort(arr) {var len = arr.length,temp,gap = 1;console.time('希尔排序耗时:');while(gap < len/5) {          //动态定义间隔序列gap =gap*5+1;}for (gap; gap > 0; gap = Math.floor(gap/5)) {for (var i = gap; i < len; i++) {temp = arr[i];for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) {arr[j+gap] = arr[j];}arr[j+gap] = temp;}}console.timeEnd('希尔排序耗时:');return arr;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(shellSort(arr));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

算法分析
最佳情况:T(n) = O(nlog2 n)
最坏情况:T(n) = O(nlog2 n)
平均情况:T(n) =O(nlog n)

八、堆排序

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

步骤

  • 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
  • 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
  • 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
/*方法说明:堆排序
@param  array 待排序数组*/
function heapSort(array) {console.time('堆排序耗时');if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {//建堆var heapSize = array.length, temp;for (var i = Math.floor(heapSize / 2) - 1; i >= 0; i--) {heapify(array, i, heapSize);}//堆排序for (var j = heapSize - 1; j >= 1; j--) {temp = array[0];array[0] = array[j];array[j] = temp;heapify(array, 0, --heapSize);}console.timeEnd('堆排序耗时');return array;} else {return 'array is not an Array!';}
}
/*方法说明:维护堆的性质
@param  arr 数组
@param  x   数组下标
@param  len 堆大小*/
function heapify(arr, x, len) {if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number') {var l = 2 * x + 1, r = 2 * x + 2, largest = x, temp;if (l < len && arr[l] > arr[largest]) {largest = l;}if (r < len && arr[r] > arr[largest]) {largest = r;}if (largest != x) {temp = arr[x];arr[x] = arr[largest];arr[largest] = temp;heapify(arr, largest, len);}} else {return 'arr is not an Array or x is not a number!';}
}
var arr=[91,60,96,13,35,65,46,65,10,30,20,31,77,81,22];
console.log(heapSort(arr));//[10, 13, 20, 22, 30, 31, 35, 46, 60, 65, 65, 77, 81, 91, 96]

算法分析
最佳情况:T(n) = O(nlogn)
最差情况:T(n) = O(nlogn)
平均情况:T(n) = O(nlogn)

九、桶排序

桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排

步骤

  • 设置一个定量的数组当作空桶;
  • 遍历输入数据,并且把数据一个一个放到对应的桶里去;
  • 对每个不是空的桶进行排序;
  • 从不是空的桶里把排好序的数据拼接起来。
/*方法说明:桶排序
@param  array 数组
@param  num   桶的数量*/
function bucketSort(array, num) {if (array.length <= 1) {return array;}var len = array.length, buckets = [], result = [], min = max = array[0], regex = '/^[1-9]+[0-9]*$/', space, n = 0;num = num || ((num > 1 && regex.test(num)) ? num : 10);console.time('桶排序耗时');for (var i = 1; i < len; i++) {min = min <= array[i] ? min : array[i];max = max >= array[i] ? max : array[i];}space = (max - min + 1) / num;for (var j = 0; j < len; j++) {var index = Math.floor((array[j] - min) / space);if (buckets[index]) {   //  非空桶,插入排序var k = buckets[index].length - 1;while (k >= 0 && buckets[index][k] > array[j]) {buckets[index][k + 1] = buckets[index][k];k--;}buckets[index][k + 1] = array[j];} else {    //空桶,初始化buckets[index] = [];buckets[index].push(array[j]);}}while (n < num) {result = result.concat(buckets[n]);n++;}console.timeEnd('桶排序耗时');return result;
}
var arr=[3,44,38,5,47,15,36,26,27,2,46,4,19,50,48];
console.log(bucketSort(arr,4));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

算法分析
桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。

最佳情况:T(n) = O(n+k)
最差情况:T(n) = O(n+k)
平均情况:T(n) = O(n2)

十、基数排序

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以是稳定的。
步骤

  • 取得数组中的最大数,并取得位数;
  • arr为原始数组,从最低位开始取每个位组成radix数组;
  • 对radix进行计数排序(利用计数排序适用于小范围数的特点);
/*** 基数排序适用于:*  (1)数据范围较小,建议在小于1000*  (2)每个数值都要大于等于0* @author damonare* @param  arr 待排序数组* @param  maxDigit 最大位数*/
//LSD Radix Sortfunction radixSort(arr, maxDigit) {var mod = 10;var dev = 1;var counter = [];console.time('基数排序耗时');for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {for(var j = 0; j < arr.length; j++) {var bucket = parseInt((arr[j] % mod) / dev);if(counter[bucket]== null) {counter[bucket] = [];}counter[bucket].push(arr[j]);}var pos = 0;for(var j = 0; j < counter.length; j++) {var value = null;if(counter[j]!=null) {while ((value = counter[j].shift()) != null) {arr[pos++] = value;}}}}console.timeEnd('基数排序耗时');return arr;
}
var arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log(radixSort(arr,2)); //[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

算法分析
最佳情况:T(n) = O(n * k)
最差情况:T(n) = O(n * k)
平均情况:T(n) = O(n * k)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/27511.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity之ShaderGraph 节点介绍 UV节点

UV节点 Flipbook&#xff08;翻页或纹理帧动画&#xff09; Polar Coordinates&#xff08;将输入 UV 的值转换为极坐标。&#xff09; Radial Shear&#xff08;径向剪切变形&#xff09; Rotate&#xff08;将UV 的值旋转&#xff09; Spherize&#xff08;鱼眼镜头的球形变…

Spring系列三:基于注解配置bean

文章目录 &#x1f497;通过注解配置bean&#x1f35d;基本介绍&#x1f35d;快速入门&#x1f35d;注意事项和细节 &#x1f497;自己实现Spring注解配置Bean机制&#x1f35d;需求说明&#x1f35d;思路分析&#x1f35d;注意事项和细节 &#x1f497;自动装配 Autowired&…

【css】超过文本显示省略号

显示省略号的前提&#xff1a;必须有指定宽度 一、单行文本超出部分显示省略号 属性取值解释overflowhidden当内容超过盒子宽度, 隐藏溢出部分white-spacenowrap让文字在一行内显示, 不换行text-overflowellipsis如果溢出的内容是文字, 就用省略号代替 .one-line{overflow:h…

【K8S】 deployment.yaml文件与Service yaml文件详解

目录 deployment.yaml文件详解Service yaml文件详解 deployment.yaml文件详解 apiVersion: extensions/v1beta1 #接口版本 kind: Deployment #接口类型 metadata:name: cango-demo #Deployment名称namespace: cango-prd #命名空间l…

【基于IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建逻辑回归鸢尾花分类预测模型】

逻辑回归进行鸢尾花分类的案例 背景说明&#xff1a; 基于IDEA Spark 3.4.1 sbt 1.9.3 Spark MLlib 构建逻辑回归鸢尾花分类预测模型&#xff0c;这是一个分类模型案例&#xff0c;通过该案例&#xff0c;可以快速了解Spark MLlib分类预测模型的使用方法。 依赖 ThisBui…

maven 删除下载失败的包

本文介绍了当Maven包报红时&#xff0c;使用删除相关文件的方法来解决该问题。文章详细说明了_remote.repositories、.lastUpdated和_maven.repositories文件的作用&#xff0c;以及如何使用命令行删除这些文件。这些方法可以帮助开发者解决Maven包报红的问题&#xff0c;确保项…

Linux 中利用设备树学习Ⅳ

系列文章目录 第一章 Linux 中内核与驱动程序 第二章 Linux 设备驱动编写 &#xff08;misc&#xff09; 第三章 Linux 设备驱动编写及设备节点自动生成 &#xff08;cdev&#xff09; 第四章 Linux 平台总线platform与设备树 第五章 Linux 设备树中pinctrl与gpio&#xff08;…

OBD针脚定义参考

OBD定义的一种标准的参考&#xff0c;不同的车场有不同的定义&#xff0c;貌似没有统一。 在某宝上看到的ODB转db9的不同的线序&#xff1a; 1&#xff09;1/2/3/6几个针脚都是一样的&#xff0c;分别上下针脚对应。 2&#xff09;其中一种4/5/7/8也是上下对应的&#xff1b;另…

自动化处理,web自动化测试处理多窗口+切换iframe框架页总结(超细整理)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 web 自动化之处理…

APP外包开发的学习流程

学习iOS App的开发是一项有趣和富有挑战性的任务&#xff0c;是一个不断学习和不断进步的过程。掌握基础知识后&#xff0c;不断实践和尝试新的项目将使您的技能不断提升。下面和大家分享一些建议&#xff0c;可以帮助您开始学习iOS App的开发。北京木奇移动技术有限公司&#…

小红书 KOL 种草执行策略揭秘:打造爆款产品,提升品牌影响力

随着互联网的普及和社交媒体的发展&#xff0c;小红书成为了众多年轻人购物决策的重要参考平台。小红书 KOL 种草作为一种新兴的营销方式&#xff0c;以其强大的传播力和影响力&#xff0c;越来越受到各大品牌的重视。本文伯乐网络传媒将给大家深入探讨小红书 KOL 种草的执行策…

mysql转sqlite3

在项目中需要将mysql迁移到sqlite3中&#xff0c;此时需要作数据转换 准备工作 下载mysql2sqlite转换工具 https://github.com/dumblob/mysql2sqlite/archive/refs/heads/master.zip 下载sqlite3 https://www.sqlite.org/download.html 转换 命令行中输入如下命令 1、cd …

海康威视摄像头二次开发_云台控制_视频画面实时预览(基于Qt实现)

一、项目背景 需求:需要在公司的产品里集成海康威视摄像头的SDK,用于控制海康威视的摄像头。 拍照抓图、视频录制、云台控制、视频实时预览等等功能。 开发环境: windows-X64(系统) + Qt5.12.6(Qt版本) + MSVC2017_X64(使用的编译器) 海康威视提供了设备网络SDK,设备网…

Zabbix监控系统详解及配置

前言 作为一个运维&#xff0c;需要会使用监控系统查看服务器状态以及网站流量指标&#xff0c;利用监控系统的数据去了解上线发布的结果&#xff0c;和网站的健康状态。利用一个优秀的监控软件&#xff0c;我们可以&#xff1a; 通过一个友好的界面进行浏览整个网站所有的服务…

Data analysis|Tableau基本介绍及可实现功能

一、基础知识介绍 &#xff08;一&#xff09;什么是tableau tableau 成立于 2003 年&#xff0c;是斯坦福大学一个计算机科学项目的成果&#xff0c;该项目旨在改善分析流程并让人们能够通过可视化更轻松地使用数据。Tableau可以帮助用户更好地理解和发现数据中的价值&#x…

学会如何学习

【【公开课】加州大学&#xff1a;学习如何学习&#xff08;全41讲&#xff09;】 单元1小结&#xff1a; 大脑中有两种思维模式&#xff1a; ①专注模式。大脑之间的保险杠之间间距小&#xff0c;很紧密。通常与思考熟悉的事物相关。 ②发散模式。间距大。允许更广泛的思维…

虚拟机centos7配置网络

虚拟机centos7配置网络 centos7克隆之后需要配置网络才能联网。 实验环境&#xff1a; VMware Workstation Pro 16CentOS 7系统虚拟机主机Windows 11系统 1.VMware网络模式设置为NAT模式 虚拟机–设置–网络适配器– ​​ ‍ 2.查看虚拟机 子网IP和网关IP 编辑–虚拟网…

一、Webpack相关(包括webpack-dev-server用以热更新和html-webpack-plugin)

概念与功能&#xff1a; webpack是前端项目工程化的具体解决方案。它提供了友好的前端模块化开发支持&#xff0c;以及代码压缩混淆、处理浏览器端JavaScript的兼容性、性能优化等强大的功能。 快速上手&#xff1a;隔行变色 -S实际是--save的简写&#xff0c;表示安装的第三方…

[AI in security]-214 网络安全威胁情报的建设

文章目录 1.什么是威胁情报2. 威胁情报3. 智能威胁情报3.1 智能威胁情报的组成3.2 整合威胁情报3.3 最佳实践4. 威胁情报的作用5.威胁情报模型6.反杀链模型7.基于TI的局部优势模型参考文献相关的研究1.什么是威胁情报 威胁情报是循证知识,包括环境、机制、指标、意义和可行性…

判断是否在当前页面事件方法

页面可见性 页面可见性介绍 长期以来我们一直缺少一个判断用户是否正在浏览某个指定标签页的方法。用户是否去看别的网站了&#xff1f;他们切换回来了吗&#xff1f;现在html5里页面可见性接口就提供给了程序员一个方法&#xff0c;让他们使用visibilitychange页面事件来判断…