python-opencv对极几何 StereoRectify

OpenCV如何正确使用stereoRectify函数

函数介绍

    用于双目相机的立体校正环节中,这里只谈谈这个函数怎么使用,参数具体指哪些

函数参数

    随便去网上一搜或者看官方手册就能得到参数信息,但是!!相对关系非常容易出错!!这里详细解释一下这些参数究竟怎么用
void stereoRectify(InputArray cameraMatrix1, InputArray distCoeffs1, InputArray cameraMatrix2,InputArray distCoeffs2, Size imageSize, InputArray R, InputArray T,OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags=CALIB_ZERO_DISPARITY, double alpha=-1, Size newImageSize=Size(), Rect* validPixROI1=0, Rect* validPixROI2=0 )
cameraMatrix1-第一个摄像机的摄像机矩阵,即左相机相机内参矩阵,矩阵第三行格式应该为 0 0 1
distCoeffs1-第一个摄像机的畸变向量
cameraMatrix2-第一个摄像机的摄像机矩阵,即右相机相机内参矩阵,矩阵第三行格式应该为 0 0 1
distCoeffs2-第二个摄像机的畸变向量
imageSize-图像大小
R- 相机之间的旋转矩阵,这里R的意义是:相机1通过变换R到达相机2的位姿
T-  左相机到右相机的平移矩阵
R1-输出矩阵,第一个摄像机的校正变换矩阵(旋转变换)
R2-输出矩阵,第二个摄像机的校正变换矩阵(旋转矩阵)
P1-输出矩阵,第一个摄像机在新坐标系下的投影矩阵
P2-输出矩阵,第二个摄像机在想坐标系下的投影矩阵
Q-4*4的深度差异映射矩阵
flags-可选的标志有两种零或者 CV_CALIB_ZERO_DISPARITY ,如果设置 CV_CALIB_ZERO_DISPARITY 的话,该函数会让两幅校正后的图像的主点有相同的像素坐标。否则该函数会水平或垂直的移动图像,以使得其有用的范围最大
alpha-拉伸参数。如果设置为负或忽略,将不进行拉伸。如果设置为0,那么校正后图像只有有效的部分会被显示(没有黑色的部分),如果设置为1,那么就会显示整个图像。设置为0~1之间的某个值,其效果也居于两者之间。
newImageSize-校正后的图像分辨率,默认为原分辨率大小。
validPixROI1-可选的输出参数,Rect型数据。其内部的所有像素都有效
validPixROI2-可选的输出参数,Rect型数据。其内部的所有像素都有效

opencv进行双目标定以及极线校正 python代码

双目标定

参考博客 OpenCV相机标定全过程
[OpenCV实战]38 基于OpenCV的相机标定
opencv立体标定函数 stereoCalibrate()

主要使用的函数

findChessboardCorners() #棋盘格角点检测
cornerSubPix() #亚像素检测
calibrateCamera() #单目标定 求解摄像机的内在参数和外在参数
stereoCalibrate() #双目标定 求解两个摄像头的内外参数矩阵,以及两个摄像头的位置关系R,T

代码

import cv2
import os
import numpy as npleftpath = 'images/left'
rightpath = 'images/right'
CHECKERBOARD = (11,12)  #棋盘格内角点数
square_size = (30,30)   #棋盘格大小,单位mm
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
imgpoints_l = []    #存放左图像坐标系下角点位置
imgpoints_r = []    #存放左图像坐标系下角点位置
objpoints = []   #存放世界坐标系下角点位置
objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32)
objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
objp[0,:,0] *= square_size[0]
objp[0,:,1] *= square_size[1]for ii in os.listdir(leftpath):img_l = cv2.imread(os.path.join(leftpath,ii))gray_l = cv2.cvtColor(img_l,cv2.COLOR_BGR2GRAY)img_r = cv2.imread(os.path.join(rightpath,ii))gray_r = cv2.cvtColor(img_r,cv2.COLOR_BGR2GRAY)ret_l, corners_l = cv2.findChessboardCorners(gray_l, CHECKERBOARD)   #检测棋盘格内角点ret_r, corners_r = cv2.findChessboardCorners(gray_r, CHECKERBOARD)if ret_l and ret_r:objpoints.append(objp)corners2_l = cv2.cornerSubPix(gray_l,corners_l,(11,11),(-1,-1),criteria) imgpoints_l.append(corners2_l)corners2_r = cv2.cornerSubPix(gray_r,corners_r,(11,11),(-1,-1),criteria)imgpoints_r.append(corners2_r)#img = cv2.drawChessboardCorners(img, CHECKERBOARD, corners2,ret)#cv2.imwrite('./ChessboardCornersimg.jpg', img)
ret, mtx_l, dist_l, rvecs_l, tvecs_l = cv2.calibrateCamera(objpoints, imgpoints_l, gray_l.shape[::-1],None,None)  #先分别做单目标定
ret, mtx_r, dist_r, rvecs_r, tvecs_r = cv2.calibrateCamera(objpoints, imgpoints_r, gray_r.shape[::-1],None,None)retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F = \cv2.stereoCalibrate(objpoints, imgpoints_l, imgpoints_r, mtx_l, dist_l, mtx_r, dist_r, gray_l.shape[::-1])   #再做双目标定print("stereoCalibrate : \n")
print("Camera matrix left : \n")
print(cameraMatrix1)
print("distCoeffs left  : \n")
print(distCoeffs1)
print("cameraMatrix left : \n")
print(cameraMatrix2)
print("distCoeffs left : \n")
print(distCoeffs2)
print("R : \n")
print(R)
print("T : \n")
print(T)
print("E : \n")
print(E)
print("F : \n")
print(F)

将打印的结果保存到标定文件中即可

极线校正
参考博客 机器视觉学习笔记(8)——基于OpenCV的Bouguet立体校正
小白视角之Bouguet双目立体校正原理

主要使用的函数

stereoRectify() #计算旋转矩阵和投影矩阵
initUndistortRectifyMap() #计算校正查找映射表
remap() #重映射

代码

import cv2
import numpy as npdef cat2images(limg, rimg):HEIGHT = limg.shape[0]WIDTH = limg.shape[1]imgcat = np.zeros((HEIGHT, WIDTH*2+20,3))imgcat[:,:WIDTH,:] = limgimgcat[:,-WIDTH:,:] = rimgfor i in range(int(HEIGHT / 32)):imgcat[i*32,:,:] = 255 return imgcatleft_image = cv2.imread("images/left/268.jpg")
right_image = cv2.imread("images/right/268.jpg")imgcat_source = cat2images(left_image,right_image)
HEIGHT = left_image.shape[0]
WIDTH = left_image.shape[1]
cv2.imwrite('imgcat_source.jpg', imgcat_source )camera_matrix0 = np.array([[1.30991855e+03, 0.00000000e+00, 5.90463086e+02],[0.00000000e+00, 1.31136722e+03, 3.33464608e+02],[0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) .reshape((3,3)) #即上文标定得到的 cameraMatrix1distortion0 = np.array([-4.88890701e-01,  3.27964225e-01, -2.72130825e-04,  1.28030208e-03, -1.85964828e-01]) #即上文标定得到的 distCoeffs1camera_matrix1 = np.array([[1.30057467e+03, 0.00000000e+00, 6.28445749e+02],[0.00000000e+00, 1.30026325e+03, 3.90475091e+02],[0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) .reshape((3,3)) #即上文标定得到的 cameraMatrix2
distortion1 = np.array([-4.95938411e-01,  2.70207629e-01,  1.81014753e-04, -4.58891345e-04, 4.41327829e-01]) #即上文标定得到的 distCoeffs2R = np.array([[ 0.99989348,  0.01340678, -0.00576869], [-0.01338004,  0.99989967,  0.00465071], [ 0.00583046, -0.00457303,  0.99997255]]) #即上文标定得到的 R
T = np.array([-244.28272039, 3.84124178, 2.0963191]) #即上文标定得到的T(R_l, R_r, P_l, P_r, Q, validPixROI1, validPixROI2) = \cv2.stereoRectify(camera_matrix0, distortion0, camera_matrix1, distortion1, np.array([WIDTH,HEIGHT]), R, T) #计算旋转矩阵和投影矩阵(map1, map2) = \cv2.initUndistortRectifyMap(camera_matrix0, distortion0, R_l, P_l, np.array([WIDTH,HEIGHT]), cv2.CV_32FC1) #计算校正查找映射表rect_left_image = cv2.remap(left_image, map1, map2, cv2.INTER_CUBIC) #重映射#左右图需要分别计算校正查找映射表以及重映射
(map1, map2) = \cv2.initUndistortRectifyMap(camera_matrix1, distortion1, R_r, P_r, np.array([WIDTH,HEIGHT]), cv2.CV_32FC1)rect_right_image = cv2.remap(right_image, map1, map2, cv2.INTER_CUBIC)imgcat_out = cat2images(rect_left_image,rect_right_image)
cv2.imwrite('imgcat_out.jpg', imgcat_out)

效果图
校正前
左图
在这里插入图片描述
右图
在这里插入图片描述
校正后
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/27126.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习深度学习——池化层

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——卷积的多输入多输出通道 📚订阅专栏:机器学习&&深度学习 希望文章对你们…

1. Git基础知识

文章目录 Git基础知识一、集中式与分布式二、中心服务器三、工作流四、分支实现五、冲突六、Fast forward七、储藏(Stashing)八、SSH 传输设置九、.gitignore 文件十、Git 命令一览十一、和远端仓库交互 Git基础知识 一、集中式与分布式 Git 属于分布式…

【单片机】51单片机,晨启科技,板子引脚对应关系

一般引脚: sbit beepP2^4; //将单片机的P2.4端口定义为beep.本口用于屏蔽上电后蜂鸣器响 sbit ledP1^0; //将单片机的P1.0端口定义为led,用于点亮LED-D1 sbit DIG1P0^0; //数码管位选1 sbit DIG2P0^1; //数码管位选2P10xFF;//初始化P1引脚全部置高&a…

【第一阶段】kotlin的when表达式

1.Java 的if /when是语句 kotlin的if/when是表达式,表达式是有返回值的 java中void是个关键字,Unit在kotlin中是个类 2.当使用when语句的时候必须有一个不满足的值即else: fun main() {var week:Int5val info when(week){1->"今天是星期一"…

Transformer学习笔记

Transformer学习笔记 前言前提条件相关介绍Transformer总体架构编码器(Encoder)位置编码(Positional Encoding)get_attn_pad_mask函数(Padding Mask)EncoderLayerMultiHeadAttentionScaledDotProductAttent…

项目出bug,找不到bug,如何拉回之前的版本

1.用gitee如何拉取代码 本文为转载于「闪耀太阳a」的原创文章原文链接:https://blog.csdn.net/Gufang617/article/details/119929145 怎么从gitee上拉取代码 1.首先找到gitee上想要拉取得代码URL地址 点击复制这里的https地址 1 ps:(另外一种方法&…

xcode打包导出ipa

转载:xcode打包导出ipa 目录 转载:xcode打包导出ipa 第一步:注册苹果开发者账号 第二步:下载APP Uploader 第三步:使用xcode打包导出ipa文件,供其他人内测 众所周知,在开发苹果应用时需要使…

Leetcode31 下一个排列

解题思路: 算法过程的第二步,可以变为将[j,end]排序,然后从[j,end)和i进行比较,在区间j,end区间第一个大于nums[i]后,交换即可 public void nextPermutation(int[] nums) {int len nums.length - 1;for(int i len;i…

【电机绘图】:插补算法(一)—直线插补—逐点比较法

今日介绍学习一种使用电机作画、绘图、加工零件时需要使用的算法 : 插补算法 本文提供直线插补的概念基础,基本思路分析,C语言实现等,代码会直接贴出! 插补算法是指在数值计算或数据处理中,根据已有的数据…

单例模式(C++)

定义 保证一个类仅有一个实例,并提供一个该实例的全局访问点。 应用场景 在软件系统中,经常有这样一些特殊的类,必须保证它们在系统中只存在一个实例,才能确保它们的逻辑正确性、以及良好的效率。如何绕过常规的构造器,提供一种…

Babel编译与Webpack

目录 Babel初识BabelBabel 使用方式使用 Babel 前的准备工作 WebpackWebpack介绍Webpack初体验Webpack核心概念入口(entry)出口(output)加载 (loader)插件(plugins) Babel Babel官网: https://babeljs.io/…

【Hystrix技术指南】(6)请求合并机制原理分析

[每日一句] 也许你度过了很糟糕的一天,但这并不代表你会因此度过糟糕的一生。 [背景介绍] 分布式系统的规模和复杂度不断增加,随着而来的是对分布式系统可用性的要求越来越高。在各种高可用设计模式中,【熔断、隔离、降级、限流】是经常被使…

小白到运维工程师自学之路 第六十四集 (dockerfile构建tomcat、mysql、lnmp、redis镜像)

一、tomcat&#xff08;更换jdk&#xff09; mkdir tomcat cd tomcat/ tar xf jdk-8u191-linux-x64.tar.gz tar xf apache-tomcat-8.5.40.tar.gzvim Dockerfile FROM centos:7 MAINTAINER Crushlinux <syh163.com> ADD jdk1.8.0_191 /usr/local/java ENV JAVA_HOME /us…

国内大模型在局部能力上已超ChatGPT

中文大模型正在后来居上&#xff0c;也必须后来居上。 数科星球原创 作者丨苑晶 编辑丨大兔 从GPT3.5彻底出圈后&#xff0c;大模型的影响力开始蜚声国际。一段时间内&#xff0c;国内科技公司可谓被ChatGPT按在地上打&#xff0c;毫无还手之力。 彼时&#xff0c;很多企业…

怎么快速搭建BI?奥威BI系统做出了表率

搭建BI系统有两大关键&#xff0c;分别是环境搭建和数仓建设。这两点不管是哪一个都相当地费时费力&#xff0c;那要怎么才能快速搭建BI平台&#xff0c;顺利实现全企业数字化运营决策&#xff1f;奥威BI系统方案&#xff0c;你值得拥有&#xff01; 奥威BI系统方案&#xff0…

三种方法实现tab栏切换(CSS方法、JS方法、Vue方法)

一、需求 给下图的静态页面添加tab栏切换效果 二、CSS方法 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"v…

云知识库软件的推荐清单,你看看你喜欢哪一个?

在选择云知识库软件时&#xff0c;有很多因素需要考虑&#xff0c;如功能、易用性、可定制性、安全性、价格等。下面是一些我喜欢的云知识库软件推荐清单&#xff1a; Confluence&#xff1a; Confluence是一款由Atlassian开发的知识管理和协作工具。它提供了强大的编辑和协作…

Go微服务实践 - Rpc核心概念理解

概述 从0研究一下Golang已经Golang的微服务生态体系&#xff0c;Golang的微服务首先要从Rpc开始&#xff0c;在升级到Grpc&#xff0c;详细介绍这些技术点都在解决什么技术问题。 Rpc Rpc (Remote Procedure Call) 远程过程调用&#xff0c;简单的理解是一个节点请求另一个节…

【果树农药喷洒机器人】Part4:果树冠层图像实例分割模型优化

文章目录 一、引言二、数据集制作2.1图像采集2.2图像标注与增强 三、构建柑橘树冠实例分割模型结构3.1优化特征提取网络3.2U-Net替换FCN 一、引言 为准确获取柑橘树冠的生长信息&#xff0c;实现果树喷药机器人的精准喷施&#xff0c;对处于多种生长阶段的柑橘树冠进行图像分割…

AI和ChatGPT:人工智能的奇迹

AI和ChatGPT&#xff1a;人工智能的奇迹 引言什么是人工智能&#xff1f;ChatGPT&#xff1a;AI的语言之王ChatGPT的工作原理ChatGPT的优势和挑战AI和ChatGPT的未来展望结论 引言 人工智能&#xff08;Artificial Intelligence&#xff0c;简称AI&#xff09;是一项令人兴奋的…