pytorch实战-图像分类(二)(模型训练及验证)(基于迁移学习(理解+代码))

目录

1.迁移学习概念

2.数据预处理

 3.训练模型(基于迁移学习)

3.1选择网络,这里用resnet

3.2如果用GPU训练,需要加入以下代码

3.3卷积层冻结模块

3.4加载resnet152模

3.5解释initialize_model函数

3.6迁移学习网络搭建

3.7优化器

3.8训练模块(可以理解为主函数)

3.9开始训练

3.10微调

4.测试模型

4.1加载训练好的模型

4.2测试数据预处理

4.3数据展示

4.4提取测试数据集

4.5计算提取数据集的预测结果

4.6展示预测结果

参考文献


1.迁移学习概念

先说一下深度学习常见的问题

        1.数据集不够,通常用数据增强解决。

        2.参数难以确定,训练时间长,这就需要用迁移学习来解决

什么叫迁移学习呢:比方说有一个对100w的自行车数据集,并用VGG模型训练好的网络,而此时你想训练一个1w自行车数据集(虽然对象一样,但采集的数据会不同),也用VGG模型进行训练,你发现,你们数据集的对象一样,选用的网络模型一样,此时在初始化自己模型权重(就是卷积层,池化层和全连接层的参数)时,可以用人家训练好的模型参数(如果不这样就需要随机初始化模型权重),这样做可以节省大量寻找最优参数的时间,又可以保证参数的准确。

总结:迁移学习就是用别人的东西训练自己的东西,但要注意,为了使用别人的模型参数,要保证自己的数据对象、网络结构、输入和输出数据的结构和别人相同。比方说,别人识别狗,你不能识别 猫,别人用VGG你不能用resnet,别人输入和输入图像大小是224×224.你不能是256×256。

进一步理解迁移学习的使用1:看下图最大的红框,表示卷积层,当用别人的模型时,对卷积层的两种处理方式。

        A:作为自己模型权重的初始化参数。

        B:冻结卷积层网络,意思是直接用别人的参数,不再更新。冻结卷积层网络又分几种情况。

                B1:当数据量小时,冻结第二大红框表示的卷积层,剩下卷积层进行更新。因为数据量小时,容易过拟合,直接用别人呢参数最好。

                B2:当数据量中等时冻结最小红框表示的卷积层,剩下的卷积层进行更行。

                B3:当数据量足够大时,不冻结卷积层,用A的方法,只作为自己模型权重的初始化参数。数据量大时,虽然对象一样,但毕竟数据不同,会有一定差异,更新参数是最优选择。

 进一步理解迁移学习的使用2:说完卷积层,在说一下全连接层,必须要注意不管卷积层选A还是B,全连接层都是要更新的,原因在于,别人模型进行图像分类可能是进行1000个分类,而你只进行100或者999个分类,那么全连接层的参数肯定是不同的。

2.数据预处理

上接该文:pytorch实战-图像分类(一)(数据预处理)

 3.训练模型(基于迁移学习)

3.1选择网络,这里用resnet

model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
#是否用人家训练好的特征来做
feature_extract = True 

3.2如果用GPU训练,需要加入以下代码

# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()if not train_on_gpu:print('CUDA is not available.  Training on CPU ...')
else:print('CUDA is available!  Training on GPU ...')device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

3.3卷积层冻结模块

def set_parameter_requires_grad(model, feature_extracting):if feature_extracting:for param in model.parameters():param.requires_grad = False

3.4加载resnet152模

注意:resnet152模型就是别人的模型。

model_ft = models.resnet152()
model_ft

3.5解释initialize_model函数

本小节只是截取pytorch官网的一个例子,用initialize_model说明在pytoch中迁移学习怎么使用,不属于本文代码

具体操作如下

        1.下载别人的模型参数,这里下载restnet152模型

        2.选择需要冻结的卷积层

        3.改变全连接层的输出个数,这里将1000改为102

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):# 选择合适的模型,不同模型的初始化方法稍微有点区别model_ft = Noneinput_size = 0if model_name == "resnet":""" Resnet152"""model_ft = models.resnet152(pretrained=use_pretrained) #下载resnet152模型set_parameter_requires_grad(model_ft, feature_extract) #选择冻结哪部分卷积层num_ftrs = model_ft.fc.in_features #全连接层的输入比方说全连接层是2048×1000,这就是2048.model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),nn.LogSoftmax(dim=1)) #原resnet152的全连接层输出是1000,自己模型需要的输出是102,进行改动。input_size = 224return model_ft, input_size

3.6迁移学习网络搭建

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)#GPU计算
model_ft = model_ft.to(device)# 模型保存
filename='checkpoint.pth'# 是否训练所有层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:params_to_update = []for name,param in model_ft.named_parameters():if param.requires_grad == True:params_to_update.append(param)print("\t",name)
else:for name,param in model_ft.named_parameters():if param.requires_grad == True:print("\t",name)

3.7优化器

就是用该方法更新模型参数

# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
#最后一层已经LogSoftmax()了,所以不能nn.CrossEntropyLoss()来计算了,nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合
criterion = nn.NLLLoss()

3.8训练模块(可以理解为主函数)

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False,filename=filename):since = time.time() #best_acc = 0"""checkpoint = torch.load(filename)best_acc = checkpoint['best_acc']model.load_state_dict(checkpoint['state_dict'])optimizer.load_state_dict(checkpoint['optimizer'])model.class_to_idx = checkpoint['mapping']"""model.to(device)val_acc_history = []train_acc_history = []train_losses = []valid_losses = []LRs = [optimizer.param_groups[0]['lr']]best_model_wts = copy.deepcopy(model.state_dict())for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 训练和验证for phase in ['train', 'valid']:if phase == 'train':model.train()  # 训练else:model.eval()   # 验证running_loss = 0.0running_corrects = 0# 把数据都取个遍for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 清零optimizer.zero_grad()# 只有训练的时候计算和更新梯度with torch.set_grad_enabled(phase == 'train'):if is_inception and phase == 'train':outputs, aux_outputs = model(inputs)loss1 = criterion(outputs, labels)loss2 = criterion(aux_outputs, labels)loss = loss1 + 0.4*loss2else:#resnet执行的是这里outputs = model(inputs)loss = criterion(outputs, labels)_, preds = torch.max(outputs, 1)# 训练阶段更新权重if phase == 'train':loss.backward()optimizer.step()# 计算损失running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / len(dataloaders[phase].dataset)epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)time_elapsed = time.time() - sinceprint('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))# 得到最好那次的模型if phase == 'valid' and epoch_acc > best_acc:best_acc = epoch_accbest_model_wts = copy.deepcopy(model.state_dict())state = {'state_dict': model.state_dict(),'best_acc': best_acc,'optimizer' : optimizer.state_dict(),}torch.save(state, filename)if phase == 'valid':val_acc_history.append(epoch_acc)valid_losses.append(epoch_loss)scheduler.step(epoch_loss)if phase == 'train':train_acc_history.append(epoch_acc)train_losses.append(epoch_loss)print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))LRs.append(optimizer.param_groups[0]['lr'])print()time_elapsed = time.time() - sinceprint('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('Best val Acc: {:4f}'.format(best_acc))# 训练完后用最好的一次当做模型最终的结果model.load_state_dict(best_model_wts)return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

3.9开始训练

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, is_inception=(model_name=="inception"))

3.10微调

在2.9中得到的模型,是冻结了卷积层,只训练了全连接层,所以此时希望在此基础上再对卷积层进行训练。

for param in model_ft.parameters():param.requires_grad = True# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(params_to_update, lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)# 损失函数
criterion = nn.NLLLoss()# Load the checkpoint,加载自己的模型checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
#model_ft.class_to_idx = checkpoint['mapping']model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10, is_inception=(model_name=="inception"))

4.测试模型

4.1加载训练好的模型

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)# GPU模式
model_ft = model_ft.to(device)# 保存文件的名字
filename='seriouscheckpoint.pth'# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

4.2测试数据预处理

        1.测试数据处理方法需要跟训练时一直才可以

        2.crop操作的目的是保证输入的大小是一致的

        3.标准化操作也是必须的,用跟训练数据相同的mean和std,但是需要注意一点训练数据是在0-1上进行标准化,所以测试数据也需要先归一化

        4.PyTorch中颜色通道是第一个维度,跟很多工具包都不一样,需要转换

def process_image(image_path):# 读取测试数据img = Image.open(image_path)# Resize,thumbnail方法只能进行缩小,所以进行了判断if img.size[0] > img.size[1]:img.thumbnail((10000, 256))else:img.thumbnail((256, 10000))# Crop操作left_margin = (img.width-224)/2bottom_margin = (img.height-224)/2right_margin = left_margin + 224top_margin = bottom_margin + 224img = img.crop((left_margin, bottom_margin, right_margin,   top_margin))# 相同的预处理方法img = np.array(img)/255mean = np.array([0.485, 0.456, 0.406]) #provided meanstd = np.array([0.229, 0.224, 0.225]) #provided stdimg = (img - mean)/std# 注意颜色通道应该放在第一个位置img = img.transpose((2, 0, 1))return img

4.3数据展示

def imshow(image, ax=None, title=None):"""展示数据"""if ax is None:fig, ax = plt.subplots()# 颜色通道还原image = np.array(image).transpose((1, 2, 0))# 预处理还原mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])image = std * image + meanimage = np.clip(image, 0, 1)ax.imshow(image)ax.set_title(title)return ax

4.4提取测试数据集

# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()model_ft.eval()if train_on_gpu:output = model_ft(images.cuda())
else:output = model_ft(images)

4.5计算提取数据集的预测结果

_, preds_tensor = torch.max(output, 1)preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
preds

4.6展示预测结果

fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2for idx in range (columns*rows):ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])plt.imshow(im_convert(images[idx]))ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()

参考文献

1.6-训练结果与模型保存_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/26144.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE4/5 GAS技能系统入门2 - AttributeSet

在GAS系统中对属性进行修改需要用到GE(Gameplay Effect),而这又涉及到AttributeSet这样的概念。 AttributeSet用于描述角色的属性集合,如攻击力、血量、防御力等,与GAS系统整合度较高,本文就来讲一讲Attri…

Consul屏蔽api

consul 没有设置密码 需要屏蔽api:/v1/internal/ui/nodes?dc&token 防止信息泄露 配置config.json {"http_config": {"block_endpoints": ["/v1/internal/ui/nodes"]} }启动consul时使用该配置: consul agent -de…

Java实现Google cloud storage 文件上传,Google oss

storage 控制台位置 创建一个bucket 点进bucket里面,权限配置里,公开访问,在互联网上公开,需要配置角色权限 新增一个访问权限 ,账号这里可以模糊搜索, 角色配置 给allUser配置俩角色就可以出现 在互联…

0.CLIP

目录 前言背景缘起/摘要数据集拟解决问题 精读IntroductionModel2.1自然语言监督2.2 创建一个有效的大数据集选择一个有效的预训练方法2.4 选择模型(选择Encoder)2.5训练小结 实验 复现(略) 前言 本课程来自深度之眼《多模态》训…

R语言3_安装SeurateData

环境Ubuntu22/20, R4.1 在命令行中键入, apt-get update apt install libcurl4-openssl-dev libssl-dev libxml2-dev libcairo2-dev libgtk-3-dev # libcairo2-dev :: systemfonts # libgtk :: textshaping进入r语言交互环境,键入, instal…

Mac显示隐藏文件夹

1、设置隐藏文件可见 defaults write com.apple.finder AppleShowAllFiles TRUE 2、killall Finder killall Finder

QtWebApp开发https服务器,完成客户端与服务器基于ssl的双向认证,纯代码操作

引言:所谓http协议,本质上也是基于TCP/IP上服务器与客户端请求和应答的标准,web开发中常用的http server有apache和nginx。Qt程序作为http client可以使用QNetworkAccessManager很方便的进行http相关的操作。Qt本身并没有http server相关的库…

深度学习——全维度动态卷积ODConv

ODConv(OMNI-DIMENSIONAL DYNAMIC CONVOLUTION)是一种关注了空域、输入通道、输出通道等维度上的动态性的卷积方法,因此被称为全维度动态卷积。 part1. 什么是动态卷积 动态卷积就是对卷积核进行线性加权 第一篇提出动态卷积的文章也是在SE之后,他提出…

快速排序【Java算法】

文章目录 1. 概念2. 思路3. 代码实现 1. 概念 快速排序是一种比较高效的排序算法,采用 “分而治之” 的思想,通过多次比较和交换来实现排序,在一趟排序中把将要排序的数据分成两个独立的部分,对这两部分进行排序使得其中一部分所有…

Flask项目打包为exe(附带项目资源,静态文件)

1.在项目根目录创建my_app.spec文件,内容如下: # -*- mode: python ; coding: utf-8 -*-block_cipher Nonea Analysis([server.py], # flask入口pathex[],binaries[], datas[("E:/**/templates","/templates"),("E:/**/s…

绝对领跑!清华最新报告评估,文心大模型3.5稳坐国内第一

近日,清华大学新闻与传播学院沈阳团队发布《大语言模型综合性能评估报告》(下文简称“报告”),报告显示百度文心一言在三大维度20项指标中综合评分国内第一,超越ChatGPT,其中中文语义理解排名第一&#xff…

无涯教程-Perl - each函数

描述 在列表context中调用此函数时,将返回一个由2个元素组成的列表,该列表由哈希的下一个元素的键和值组成,以便您可以对其进行迭代。在标量context中调用时,仅返回哈希中下一个元素的键。 语法 以下是此函数的简单语法- each HASH返回值 在列表context中调用此函数时,将返…

(文章复现)建筑集成光储系统规划运行综合优化方法matlab代码

参考文献: [1]陈柯蒙,肖曦,田培根等.一种建筑集成光储系统规划运行综合优化方法[J].中国电机工程学报,2023,43(13):5001-5012. 1.基本原理 本文建立的双层耦合模型内、外层分别对应求解容量配置与能量调度问题。外层模型设置光伏与储能容量备选集并将容量配置组合…

实战项目——多功能电子时钟

一,项目要求 二,理论原理 通过按键来控制状态机的状态,在将状态值传送到各个模块进行驱动,在空闲状态下,数码管显示基础时钟,基础时钟是由7个计数器组合而成,当在ADJUST状态下可以调整时间&…

17款奔驰S400升级原厂前排座椅通风系统,夏天必备的功能

通风座椅的主动通风功能可以迅速将座椅表面温度降至适宜程度,从而确保最佳座椅舒适性。该功能启用后,车内空气透过打孔皮饰座套被吸入座椅内部,持续时间为 8 分钟。然后,风扇会自动改变旋转方向,将更凉爽的环境空气从座…

拦截器——Interceptor及与过滤器区别

目录 spring中拦截器 过滤器跟拦截器的区别 HandlerInterceptor拦截器 拦截器工作原理 拦截器使用场景 定义拦截器 LoginInterceptor 注册拦截器 MethodInterceptor拦截器 方式一:继承 MethodInterceptor 方式二:基于注解的AspectJ方…

用于大型图像模型的 CNN 内核的最新内容

一、说明 由于OpenAI的ChatGPT的巨大成功引发了大语言模型的繁荣,许多人预见到大图像模型的下一个突破。在这个领域,可以提示视觉模型分析甚至生成图像和视频,其方式类似于我们目前提示 ChatGPT 的方式。 用于大型图像模型的最新深度学习方法…

基于自组织竞争网络的患者癌症发病预测(matlab代码)

1.案例背景 1.1自组织竞争网络概述 前面案例中讲述的都是在训练过程中采用有导师监督学习方式的神经网络模型。这种学习方式在训练过程中,需要预先给网络提供期望输出,根据期望输出来调整网络的权重,使得实际输出和期望输出尽可能地接近。但是在很多情况下,在人们认知的过程中…

第八篇: K8S Prometheus Operator实现Ceph集群企业微信机器人告警

Prometheus Operator实现Ceph集群企业微信告警 实现方案 我们的k8s集群与ceph集群是部署在不同的服务器上,因此实现方案如下: (1) ceph集群开启mgr内置的exporter服务,用于获取ceph集群的metrics (2) k8s集群通过 Service Endponit Ser…

【VALSE2023】0610 胡瀚《视觉自监督学习年度进展评述》

from: https://www.bilibili.com/video/BV1J44y1w79r 文章目录 自监督学习年度进展技术进展趋势一:掩码图像建模的改进技术进展二:发现掩码图像建模对**大模型**比较友好技术进展三:针对**小模型**的掩码图像建模训练技术进展四&a…