深度学习——全维度动态卷积ODConv

ODConv(OMNI-DIMENSIONAL DYNAMIC CONVOLUTION)是一种关注了空域、输入通道、输出通道等维度上的动态性的卷积方法,因此被称为全维度动态卷积。

part1. 什么是动态卷积

动态卷积就是对卷积核进行线性加权

第一篇提出动态卷积的文章也是在SE之后,他提出目前的注意力机制模型主要都是在特征图上做工作,而动态卷积它对多个卷积核进行线性加权,加权值则与输入有关,这就使得动态卷积具有输入依赖性。

也就是说,对于不同的输入,我们使用不同的卷积核。之后对这些不同的卷积核,进行注意力加权。

在这里插入图片描述
看这组图片,这是CondConv: Conditionally Parameterized Convolutions for Efficient Inference的作者提出的。
在两种方式的对比下,发现他们的作用是一样的,但是图b中的方法计算量就像是NLnet重复计算的attention map一样,计算量太大,不适合把卷积放在这里去实现所谓的动态,所以作者提出了方法a,也就是condconv。

part2. 动态卷积和注意力机制有什么差别

动态卷积和注意力机制在神经网络中都是常用的技术,但具有不同的作用和目的。

动态卷积是指在卷积过程中,卷积核的权重不是固定的,而是可以根据输入数据的不同而动态调整。这样可以使卷积核能够更好地适应输入数据的特征,提高卷积网络的性能。

注意力机制是一种重要的神经网络模块,可以使神经网络在处理序列数据时能够更好地关注与当前任务相关的信息。注意力机制可以根据输入数据中的关键信息,给予不同的权重,在传递信息时更多地关注这些重要信息。

因此,动态卷积和注意力机制虽然都可以提高神经网络的性能,但其作用不同。动态卷积是加强了特征的适应性,而注意力机制则是更好地关注当前任务需要的信息。

part3.ODConv

ODConv的发现其实比较像CA和GC这种注意力机制,都是发现了已有的东西的不足(或许是忽略的什么,或许是发现某些计算不必要)从而提出的改进。

ODConv发现:现有的工作采用单个注意力,输入对于输出卷积核有相同的注意力值,但其他三个维度(关于空间大小、输入通道数和输出通道数) 卷积核的空间维度、输入通道维度以及输出通道维度)都被忽略了。 受此启发,作者提出了全维动态卷积(ODConv)

如下图所示
ODConv在任何卷积和内部采用并行策略,从四个维度来学习卷积核内部的注意力值,从而获得全维度的卷积核注意力值。
在这里插入图片描述
下图课一直观的看出,采用了SE的ODConv(b)和普通的动态卷积的对比。
也就是说,ODConv添加了卷积核的空间维度、输入通道维度以及输出通道维度的特征学习。
在这里插入图片描述

动态卷积和注意力机制虽然都可以提高神经网络的性能,但其作用不同。动态卷积是加强了特征的适应性,而注意力机制则是更好地关注当前任务需要的信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/26132.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

快速排序【Java算法】

文章目录 1. 概念2. 思路3. 代码实现 1. 概念 快速排序是一种比较高效的排序算法,采用 “分而治之” 的思想,通过多次比较和交换来实现排序,在一趟排序中把将要排序的数据分成两个独立的部分,对这两部分进行排序使得其中一部分所有…

Flask项目打包为exe(附带项目资源,静态文件)

1.在项目根目录创建my_app.spec文件,内容如下: # -*- mode: python ; coding: utf-8 -*-block_cipher Nonea Analysis([server.py], # flask入口pathex[],binaries[], datas[("E:/**/templates","/templates"),("E:/**/s…

绝对领跑!清华最新报告评估,文心大模型3.5稳坐国内第一

近日,清华大学新闻与传播学院沈阳团队发布《大语言模型综合性能评估报告》(下文简称“报告”),报告显示百度文心一言在三大维度20项指标中综合评分国内第一,超越ChatGPT,其中中文语义理解排名第一&#xff…

无涯教程-Perl - each函数

描述 在列表context中调用此函数时,将返回一个由2个元素组成的列表,该列表由哈希的下一个元素的键和值组成,以便您可以对其进行迭代。在标量context中调用时,仅返回哈希中下一个元素的键。 语法 以下是此函数的简单语法- each HASH返回值 在列表context中调用此函数时,将返…

(文章复现)建筑集成光储系统规划运行综合优化方法matlab代码

参考文献: [1]陈柯蒙,肖曦,田培根等.一种建筑集成光储系统规划运行综合优化方法[J].中国电机工程学报,2023,43(13):5001-5012. 1.基本原理 本文建立的双层耦合模型内、外层分别对应求解容量配置与能量调度问题。外层模型设置光伏与储能容量备选集并将容量配置组合…

实战项目——多功能电子时钟

一,项目要求 二,理论原理 通过按键来控制状态机的状态,在将状态值传送到各个模块进行驱动,在空闲状态下,数码管显示基础时钟,基础时钟是由7个计数器组合而成,当在ADJUST状态下可以调整时间&…

17款奔驰S400升级原厂前排座椅通风系统,夏天必备的功能

通风座椅的主动通风功能可以迅速将座椅表面温度降至适宜程度,从而确保最佳座椅舒适性。该功能启用后,车内空气透过打孔皮饰座套被吸入座椅内部,持续时间为 8 分钟。然后,风扇会自动改变旋转方向,将更凉爽的环境空气从座…

拦截器——Interceptor及与过滤器区别

目录 spring中拦截器 过滤器跟拦截器的区别 HandlerInterceptor拦截器 拦截器工作原理 拦截器使用场景 定义拦截器 LoginInterceptor 注册拦截器 MethodInterceptor拦截器 方式一:继承 MethodInterceptor 方式二:基于注解的AspectJ方…

用于大型图像模型的 CNN 内核的最新内容

一、说明 由于OpenAI的ChatGPT的巨大成功引发了大语言模型的繁荣,许多人预见到大图像模型的下一个突破。在这个领域,可以提示视觉模型分析甚至生成图像和视频,其方式类似于我们目前提示 ChatGPT 的方式。 用于大型图像模型的最新深度学习方法…

基于自组织竞争网络的患者癌症发病预测(matlab代码)

1.案例背景 1.1自组织竞争网络概述 前面案例中讲述的都是在训练过程中采用有导师监督学习方式的神经网络模型。这种学习方式在训练过程中,需要预先给网络提供期望输出,根据期望输出来调整网络的权重,使得实际输出和期望输出尽可能地接近。但是在很多情况下,在人们认知的过程中…

第八篇: K8S Prometheus Operator实现Ceph集群企业微信机器人告警

Prometheus Operator实现Ceph集群企业微信告警 实现方案 我们的k8s集群与ceph集群是部署在不同的服务器上,因此实现方案如下: (1) ceph集群开启mgr内置的exporter服务,用于获取ceph集群的metrics (2) k8s集群通过 Service Endponit Ser…

【VALSE2023】0610 胡瀚《视觉自监督学习年度进展评述》

from: https://www.bilibili.com/video/BV1J44y1w79r 文章目录 自监督学习年度进展技术进展趋势一:掩码图像建模的改进技术进展二:发现掩码图像建模对**大模型**比较友好技术进展三:针对**小模型**的掩码图像建模训练技术进展四&a…

Unity Shader编辑器工具类ShaderUtil 常用函数和用法

Unity Shader编辑器工具类ShaderUtil 常用函数和用法 Unity的Shader编辑器工具类ShaderUtil提供了一系列函数,用于编译、导入和管理着色器。本文将介绍ShaderUtil类中的常用函数和用法。 编译和导入函数 CompileShader 函数签名:public static bool C…

web前端转正工作总结范文5篇

web前端转正工作总结(篇1) 来到__有限公司已经三个月了,目前的工作是前端开发,我是一名应届毕业生,之前没有过工作经验,在刚来到__这个大家庭的时候,我就被这里的工作气氛深深地吸引&#xff0…

Elastic的下载

文章目录 ElasticSearch的下载扩展1(ElasticSearch 与 JDK 版本 适配)扩展2(访问 http://192.168.1.200:9200 没有显示信息)扩展3(免密登录) ElasticSearch的下载 官方下载网址:https://www.el…

在 Ubuntu 上安装 Docker 桌面

Ubuntu 22.04 (LTS) 安装 Docker 桌面 要成功安装 Docker Desktop,您必须: 满足系统要求拥有 64 位版本的 Ubuntu Jammy Jellyfish 22.04 (LTS) 或 Ubuntu Impish Indri 21.10。对于非 Gnome 桌面环境,必须安装 gnome-terminal:…

数字孪生技术的实用价值体现在哪?

随着科技的不断进步,数字孪生技术已成为引领未来发展的重要驱动力。数字孪生是将现实世界与数字世界紧密结合的技术,通过创建虚拟的物理模型,实时模拟和分析真实世界中的物体和过程,让数字孪生在各个领域都展现出了巨大的潜力&…

nvm下载node导致npm报错无法使用

有个依赖库需要更新下node,用nvm下载后项目跑不起来了,npm -v 还报错 其实一开始是npm下载不来,然后换了淘宝镜像后还是报错 然后就只能手动下载下了 进入node.js官网 https://nodejs.org/en/download 下载后注意要安装在你nvm目录中&#x…

Dockerfile构建LNMP镜像

建立工作目录 [rootlocalhost ~]# mkdir lnmp [rootlocalhost ~]# cd lnmp/ 编写Dockerfile文件 [rootlocalhost lnmp]# vim Dockerfile [rootlocalhost lnmp]# ll 总用量 4 -rw-r--r--. 1 root root 774 8月 3 14:54 Dockerfile [rootlocalhost lnmp]# vim Dockerfile #基础…

【Spring Boot】(三)深入理解 Spring Boot 日志

文章目录 前言一、日志文件的作用二、Spring Boot 中的日志2.1 查看输出的日志信息2.2 日志格式二、Spring Boot 中的日志2.1 查看输出的日志信息2.2 日志格式 三、自定义日志输出3.1 日志框架3.2 日志对象的获取3.3 使用日志对象打印日志 四、日志级别4.1 日志级别的作用4.2 日…