第6章 Python 数字图像处理(DIP) - 彩色图像处理2 - 灰度分层(灰度分割)和彩色编码,灰度值到彩色变换,Gray to RGB

第6章主要讲的是彩色图像处理,一些彩色模型如RGB,CMK,CMYK,HSI等色彩模型;彩色模型的变换关系;还包含由灰度图像怎样处理成假彩色图像;使用彩色分割图像等。本章比较少理论还有变换的描述,主要以代码为主,如有需要,请自行查看书本。

这里写目录标题

  • 假彩色图像处理
      • 灰度分层(灰度分割)和彩色编码
      • 灰度值到彩色变换
      • Gray -> RGB

假彩色图像处理

灰度分层(灰度分割)和彩色编码

def gray_slice(img_gray):img_ori = img_gray / 255.rows,cols = img_ori.shape[:2]labels = np.zeros([rows,cols])for i in range(rows):for j in range(cols):if(img_ori[i,j] < 0.125):labels[i,j] = 0elif(img_ori[i,j] < 0.25):labels[i,j] = 0.2elif(img_ori[i,j] < 0.375):labels[i,j] = 0.4elif(img_ori[i,j] < 0.5):labels[i,j] = 0.5elif(img_ori[i,j] < 0.625):labels[i,j] = 0.6elif(img_ori[i,j] < 0.75):labels[i,j] = 0.8elif(img_ori[i,j] < 0.875):labels[i,j] = 0.9else:labels[i,j] = 1return labels
# Gray to RGB
from skimage import io, exposure, colorimg_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH06/Fig0620(a)(picker_phantom).tif', 0)labels = gray_slice(img_ori)
labels = np.uint8(labels * 255)
img_rgb = color.label2rgb(labels)plt.figure(figsize=(20, 5))
plt.subplot(141), plt.imshow(img_ori, 'gray'), plt.title('Original')plt.subplot(142), plt.imshow(img_rgb, ), plt.title('Pseudo RGB')
# plt.subplot(143), plt.imshow(img_cmyk, ), plt.title('CMYK')
# plt.subplot(144), plt.imshow(img_r, ), plt.title('Red Channel')plt.tight_layout()
plt.show()

在这里插入图片描述

# Gray to RGB
from skimage import io, exposure, color
def gray_slice(img_gray):rows,cols = img_gray.shape[:2]labels = np.zeros([rows,cols], np.uint8)for i in range(rows):for j in range(cols):if(img_gray[i,j] < 250):labels[i,j] = 125else:labels[i,j] = 100return labelsimg_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH06/Fig0621(a)(weld-original).tif', 0)labels = gray_slice(img_ori)
img_rgb = color.label2rgb(labels)plt.figure(figsize=(20, 5))
plt.subplot(141), plt.imshow(img_ori, 'gray'), plt.title('Original')plt.subplot(142), plt.imshow(img_rgb, ), plt.title('Pseudo RGB')
# plt.subplot(143), plt.imshow(img_cmyk, ), plt.title('CMYK')
# plt.subplot(144), plt.imshow(img_r, ), plt.title('Red Channel')plt.tight_layout()
plt.show()

在这里插入图片描述

# Gray to RGB
from skimage import io, exposure, color
def gray_slice(img_gray):rows,cols = img_gray.shape[:2]labels = np.zeros([rows,cols], np.uint8)for i in range(rows):for j in range(cols):if(img_gray[i,j] < 31):labels[i,j] = 0elif(img_gray[i,j] < 63):labels[i, j] = 10elif(img_gray[i,j] < 95):labels[i, j] = 20elif(img_gray[i,j] < 127):labels[i, j] = 30elif(img_gray[i,j] < 159):labels[i, j] = 40elif(img_gray[i,j] < 191):labels[i, j] = 255elif(img_gray[i,j] < 223):labels[i, j] = 255else:labels[i,j] = 255return labelsimg_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH06/Fig0622(a)(tropical_rain_grayscale.tif', 0)labels = gray_slice(img_ori)
img_rgb = color.label2rgb(labels)hist, bins, patches = plt.hist(img_ori.flatten(), bins=256)
plt.figure(figsize=(15, 10))
plt.subplot(211), plt.imshow(img_ori, 'gray'), plt.title('Original')
plt.subplot(212), plt.imshow(img_rgb, ), plt.title('Pseudo RGB')
plt.tight_layout()
plt.show()

在这里插入图片描述
在这里插入图片描述

灰度值到彩色变换

# Gray to RGB
from skimage import io, exposure, colorimg_r = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH06/Fig0627(a)(WashingtonDC Band3-RED).TIF', 0)
img_g = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH06/Fig0627(b)(WashingtonDC Band2-GREEN).TIF', 0)
img_b = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH06/Fig0627(c)(1)(WashingtonDC Band1-BLUE).TIF', 0)
img_ir = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH06/Fig0627(d)(WashingtonDC Band4).TIF', 0)# IR G B 
img_irgb = np.dstack([img_ir, img_g, img_b])# R IR B
img_RIRB = np.dstack([img_r, img_ir, img_b])plt.figure(figsize=(15, 10))
plt.subplot(231), plt.imshow(img_r, 'gray'), plt.title('Red Band')
plt.subplot(232), plt.imshow(img_g, 'gray'), plt.title('Green Band')
plt.subplot(233), plt.imshow(img_b, 'gray'), plt.title('Blue Band')
plt.subplot(234), plt.imshow(img_ir, 'gray'), plt.title('IR Band')
plt.subplot(235), plt.imshow(img_irgb), plt.title('IR G B ')
plt.subplot(236), plt.imshow(img_RIRB), plt.title('R IR B')
plt.tight_layout()
plt.show()# RGB
img_rgb = np.dstack([img_r, img_g, img_b])
plt.figure(figsize=(5, 5))
plt.imshow(img_rgb), plt.title('RGB')
plt.tight_layout()
plt.show()

在这里插入图片描述

在这里插入图片描述

# import numpy as np
# from skimage import io,exposure,color
# import matplotlib.pyplot as plt
# import math
# import sys# 灰度值到彩色变换
# 定义灰度值到彩色变换
L = 255
def GetR(gray):if gray < L/2:return 0elif gray > L/4*3:return Lelse:return 4*gray-2*L
def GetG(gray):if gray < L/4:return 4*grayelif gray > L/4*3:return 4*L-4*grayelse:return L
def GetB(gray):if gray < L/4:return Lelif gray > L/2:return 0else:return 2*L-4*graydef gray2rgb(img_gray):height, width = img_gray.shape[:2]dst = np.zeros((height, width, 3), dtype = 'uint8')for h in range(height):for w in range(width):r,g,b = GetR(img_gray[h,w]),GetG(img_gray[h,w]),GetB(img_gray[h,w])dst[h, w, :] = (r,g,b)return dst
# Gray to RGB
from skimage import io, exposure, colorimg_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH06/Fig0620(a)(picker_phantom).tif', 0)img_rgb = gray2rgb(img_ori)plt.figure(figsize=(20, 5))
plt.subplot(141), plt.imshow(img_ori, 'gray'), plt.title('Original')plt.subplot(142), plt.imshow(img_rgb, ), plt.title('Pseudo RGB')
# plt.subplot(143), plt.imshow(img_cmyk, ), plt.title('CMYK')
# plt.subplot(144), plt.imshow(img_r, ), plt.title('Red Channel')plt.tight_layout()
plt.show()

在这里插入图片描述

# Gray to RGB
from skimage import io, exposure, colorimg_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH06/Fig0622(a)(tropical_rain_grayscale.tif', 0)img_rgb = gray2rgb(img_ori)plt.figure(figsize=(20, 10))
plt.subplot(141), plt.imshow(img_ori, 'gray'), plt.title('Original')plt.subplot(142), plt.imshow(img_rgb, ), plt.title('Pseudo RGB')
# plt.subplot(143), plt.imshow(img_cmyk, ), plt.title('CMYK')
# plt.subplot(144), plt.imshow(img_r, ), plt.title('Red Channel')plt.tight_layout()
plt.show()

在这里插入图片描述

Gray -> RGB

严格来说这不是由于Gray转RGB,因为利用原来的GB通道

我们要将RGB表示转换为gGB表示,也就是用灰度分量g取代蓝色分量R,蓝色分量B和绿色分量G不变。我们可以从gGB计算出红色分量R,因为灰度g=pR+qG+tB(其中p=0.2989,q=0.5870,t=0.1140),于是R=(g-qG-t*B)/p。于是我们只要保留B和G两个颜色分量,再加上灰度图g,就可以回复原来的RGB图像。同样,我们这里的g是可以随便取代红绿蓝三种分量中的任一分量的。下面进行演示。

# Gray to RGB
img_ori = cv2.imread('DIP_Figures/DIP3E_Original_Images_CH06/Fig0646(a)(lenna_original_RGB).tif')src = img_ori.copy()
# src_gray = bgr2gray(img_ori)
src_gray = cv2.cvtColor(img_ori, cv2.COLOR_BGR2GRAY)B = src[:,:,0]
G = src[:,:,1]
R = src[:,:,2]# 灰度g=p*R+q*G+t*B(其中p=0.2989,q=0.5870,t=0.1140),于是B=(g-p*R-q*G)/t。于是我们只要保留R和G两个颜色分量,再加上灰度图g,就可以回复原来的RGB图像。
g = src_gray[:]
p = 0.2989; q = 0.5870; t = 0.1140
B_new = (g - p * R - q * G) /t
B_new = np.uint8(normalize(B_new) * 255) # 这种方式会有点偏蓝
# B_new = np.uint8(B_new / 255)            # 这种方式会偏绿
src_new = np.zeros((src.shape)).astype("uint8")
src_new[:,:,0] = B_new
src_new[:,:,1] = G
src_new[:,:,2] = Rplt.figure(figsize=(20, 5))
plt.subplot(141), plt.imshow(img_ori[:, :, ::-1]), plt.title('Original')
plt.subplot(142), plt.imshow(src_gray, ), plt.title('GrayScale')
plt.subplot(143), plt.imshow(src_new[..., ::-1], ), plt.title('Gray To RGB')
# plt.subplot(144), plt.imshow(img_r, ), plt.title('Red Channel')plt.tight_layout()
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/260540.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

值重新赋值_JavaScript-赋值运算符

好好学习&#xff0c;天天向上赋值运算符赋值运算符必须有变量参与运算&#xff0c;赋值运算符会做两件事情第一&#xff0c;将变量中原始值参与对应数学运算&#xff0c;与右侧的数据第二&#xff0c;将运算结果再重新赋值给变量变量位于操作符的左侧赋值运算符符号&#xff1…

超声换能器的原理及设计_超声波发生器、变幅杆、焊头的匹配介绍

一.超声波换能器原理与设计(超声波振动系统)匹配摘要&#xff1a;就塑料焊接机的超声波换能器系统进行设计和计算&#xff0c;并用PRO- E 三维软件绘出三维模型&#xff0c;最后进行频率分析&#xff0c;为超声波换能系统提供了有用的设计方法。关键词&#xff1a;超声波换能器…

位图法

判断集合中存在重复是常见编程任务之一&#xff0c;当集合中数据量比较大时我们通常希望少进行几次扫描&#xff0c;这时双重循环法就不可取了。位图法比较适合于这种情况&#xff0c;它的做法是按照集合中最大元素max创建一个长度为max1的新数组&#xff0c;然后再次扫描原数组…

CentOS查看和修改PATH环境变量的方法

为什么80%的码农都做不了架构师&#xff1f;>>> 查看PATH&#xff1a;echo $PATH 以添加mongodb server为列 修改方法一&#xff1a; export PATH/usr/local/mongodb/bin:$PATH //配置完后可以通过echo $PATH查看配置结果。 生效方法&#xff1a;立即生效 有效期限…

IOS简单的登陆界面

主要需要注意的几个问题&#xff1a; 1.导入图片方式最好用文件导入 代码: 在ViewController.m文件中 2.UILable常用属性 property(nonatomic,copy) NSString *text; //设置文本内容 property(nonatomic,retain) UIFont *font; //设置字体 …

第6章 Python 数字图像处理(DIP) - 彩色图像处理3 -色彩变换、彩色校正、彩色图像平滑和锐化、HSI彩色空间中的分割、RGB空间中的分割、彩色边缘检测

这里写目录标题色彩变换彩色图像平滑和锐化使用彩色分割图像HSI 彩色空间中的分割RGB空间中的分割彩色边缘检测彩色图像中的噪声色彩变换 # 图像颜色分量的显示 from PIL import Imageimg_ori Image.open(DIP_Figures/DIP3E_Original_Images_CH06/Fig0630(01)(strawberries_f…

javascript 在对象中使用 定时器_如何使用JavaScript 面向对象编程

学习目标理解面向对象开发思想掌握 JavaScript 面向对象开发相关模式面向对象介绍什么是对象Everything is object (一切皆对象)我们可以从两个层次来理解对象&#xff1a;(1) 对象是单个事物的抽象。一本书、一辆汽车、一个人都可以是对象&#xff0c;一个数据库、一张网页、一…

char数组转string_String类和其它数据类型的相互转换

对于上面的这些包装类&#xff0c;除了Character以外&#xff0c;都有可以直接使用字符串参数的构造函数&#xff0c;这也就使得我们将String类转换为这些数据类型变得相当之简单&#xff0c;即&#xff1a;Boolean(String s)、Integer(String s)、Long(String s)、Float(Strin…

python3循环一直到一个值结束_一步一步学Python3(小学生也适用) 第十七篇:循环语句for in循环...

一、Python for in循环Python for in 循环&#xff0c;是用来遍历任何数据序列&#xff0c;如一个列表&#xff0c;一个字符串&#xff0c;一个字典&#xff0c;一个元组等。for in 循环的一般语法如下&#xff1a;for item in 序列:语句块else:语句块for in 字符串&#xff1…

设置Jupyter notebook 默认工作路径,修改Jupyter notebook 默认浏览器为Chrome

这里写目录标题一 设置Jupyter notebook 默认工作路径二 修改Jupyter notebook 默认浏览器为Chrome一 设置Jupyter notebook 默认工作路径 安装好anaconda 后&#xff0c;jupyter notebook默认是有安装好的。在windows的菜单栏找到anaconda目录&#xff0c;如下图 鼠标右键点…

第10章 Python 数字图像处理(DIP) - 图像分割 基础知识 标准差分割法

This Chapter is all about image segmentation. I still not finished whole chapter, but here try to publish some for reference. 这里写目录标题基础知识import sys import numpy as np import cv2 import matplotlib import matplotlib.pyplot as plt import PIL from …

OFBiz的探索进阶

主要参照https://cwiki.apache.org/OFBIZ/ofbiz-tutorial-a-beginners-development-guide.html这个教程&#xff0c;实现的过程教程上很详细&#xff0c;故这里不多说 还参考了下http://www.hotwaxmedia.com/apache-ofbiz-blog/ofbiz/ofbiz-tutorials/ofbiz-tutorial-building-…

对GCD的一些理解和实践

对GCD的一些理解和实践GCD GCD&#xff0c;全程Grand Central Dispatch&#xff0c;是苹果为了多核并行提出的解决方案。它是使用C语言实现&#xff0c;但是由于用了block来处理回调&#xff0c;所以使用起来十分方便。并且GCD会自动管理线程的生命周期&#xff0c;不需要我们去…

[Buzz Today]2012.08.08

# Dark Reign 2 源代码现身Google Code Pandemic工作室开发的即时战略游戏《Dark Reign 2》源代码被泄露到了Google Code http://code.google.com/p/darkreign2/ # Warsow 1.0发布 Set in a futuristic cartoonish world, Warsow is a completely free fast-paced first-person…

PyTorch训练中Dataset多线程加载数据,比Dataloader里设置多个workers还要快

PyTorch训练中Dataset多线程加载数据&#xff0c;而不是在DataLoader 背景与需求 现在做深度学习的越来越多人都有用PyTorch&#xff0c;他容易上手&#xff0c;而且API相对TF友好的不要太多。今天就给大家带来最近PyTorch训练的一些小小的心得。 大家做机器学习、深度学习都…

python调用摄像头人脸识别代码_利用face_recognition,dlib与OpenCV调用摄像头进行人脸识别...

用已经搭建好 face_recognition&#xff0c;dlib 环境来进行人脸识别 未搭建好环境请参考&#xff1a; 使用opencv 调用摄像头 import face_recognition import cv2 video_capture cv2.videocapture(0) # videocapture打开摄像头&#xff0c;0为笔记本内置摄像头&#xff0c;1…

【转】彻底搞清计算结构体大小和数据对齐原则

数据对齐: 许多计算机系统对基本数据类型合法地址做出了一些限制&#xff0c;要求某种类型对象的地址必须是某个值K(通常是2&#xff0c;4或8)的倍数。这种对齐限制简化了形成处理器和存储器系统之间的接口的硬件设计。例如&#xff0c;假设一个处理器总是从存储器中取出8个字节…

Pytorch 学习率衰减 之 余弦退火与余弦warmup 自定义学习率衰减scheduler

学习率衰减&#xff0c;通常我们英文也叫做scheduler。本文学习率衰减自定义&#xff0c;通过2种方法实现自定义&#xff0c;一是利用lambda&#xff0c;另外一个是继承pytorch的lr_scheduler import math import matplotlib.pyplot as plt import numpy as np import torch i…

c++ 字符串赋给另一个_7.2 C++字符串处理函数

点击上方“C语言入门到精通”&#xff0c;选择置顶第一时间关注程序猿身边的故事作者闫小林白天搬砖&#xff0c;晚上做梦。我有故事&#xff0c;你有酒么&#xff1f;C字符串处理函数C语言和C提供了一些字符串函数&#xff0c;使得用户能很方便地对字符串进行处理。这些是放在…

如何检测远程主机上的某个端口是否开启

有时候我们要测试远程主机上的某个端口是否开启&#xff0c;无需使用太复杂的工作&#xff0c;windows下就自带了工具&#xff0c;那就是telnet。怎么检测呢&#xff0c;按下面的步骤&#xff1a; 1、安装telnet。我的win7下就没有telnet&#xff0c;在cmd下输入telnet提示没有…