基于OpenCV与tensorflow object detection API使用迁移学习,基于SSD模型训练实现手势识别完整流程,涉及到数据集收集与标注、VOC2012数据集制作,tfrecord数据生成、SSD迁移学习与模型导出,OpenCV摄像头实时视频流读取与检测处理,整个过程比较长,操作步骤比较多,这里说一下主要阶段与关键注意点。
第一阶段:数据收集与数据标注
第二阶段:VOC2012数据集与训练集制作
第三阶段:基于SSD模型的迁移学习
第四阶段:模型导出与使用
基于OpenCV与tensorflow object detection API使用迁移学习,基于SSD模型训练实现手势识别完整流程,涉及到数据集收集与标注、VOC2012数据集制作,tfrecord数据生成、SSD迁移学习与模型导出,OpenCV摄像头实时视频流读取与检测处理,整个过程比较长,操作步骤比较多,这里说一下主要阶段与关键注意点。
第一阶段:数据收集与数据标注
第二阶段:VOC2012数据集与训练集制作
第三阶段:基于SSD模型的迁移学习
第四阶段:模型导出与使用
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/256980.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!