kaggle中zillow比赛中模型融合的方法及其代码

在机器学习这个领域,尤其是做多媒体(声音、图像、视频)相关的机器学习方法研究,会涉及很多特征、分类模型(分类任务)的选择。以声音识别为例,常见的特征有MFCC、LPCC、spectrogram-like features 等,分类模型就很多了,有传统的分类模型SVM、KNN、Random Forest,还有现在比较火的深度模型DNN、CNN、RNN等。而往往单特征、单模型很难取得理想的性能(performance)。那么,如何高效的利用不同的特征和模型?

一个重要的方法就是进行融合(fusion)。典型的fusion方法有early fusion和late fusion。顾名思义,early fusion就是在特征上(feature-level)进行融合,进行不同特征的连接(concatenate),输入到一个模型中进行训练;late fusion指的是在预测分数(score-level)上进行融合,做法就是训练多个模型,每个模型都会有一个预测评分,我们对所有模型的结果进行fusion,得到最后的预测结果。常见的late fusion方法有取分数的平均值(average)、最大值(maximum)、加权平均(weighted average),另外还有采用Logistics Regression的方法进行late fusion。总之,方法很多,可视情况采取。

Fusion是一个提高模型性能的很好的方法,在参加kaggle比赛或者平时做项目上都是一个很常用的方法,尤其是像kaggle比赛这种比赛性质的,基本每一位参赛者的结果都是进行fusion后的结果,这里,模型融合也可以叫做ensemble,理解意思就好。

#
# import libariry
#import numpy as np
import pandas as pd
# data precession
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import KFold
# model
from xgboost import XGBRegressor
from lightgbm import LGBMRegressorfrom sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor, AdaBoostRegressor
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor#
#
#version 29 -> LB:0.6446
#   add more feature
#
#version 28 -> LB:0.6445
#   model params 'n_estimators' -> 100
#
# version 26 -> LB:0.6443
#   model params 'n_estimators' -> 50
#def load_data():train_2016 = pd.read_csv('../input/train_2016_v2.csv')train_2017 = pd.read_csv('../input/train_2017.csv')train = pd.concat([train_2016, train_2017], ignore_index=True)properties = pd.read_csv('../input/properties_2017.csv')sample = pd.read_csv('../input/sample_submission.csv')print("Preprocessing...")for c, dtype in zip(properties.columns, properties.dtypes):if dtype == np.float64:properties[c] = properties[c].astype(np.float32)print("Set train/test data...")id_feature = ['heatingorsystemtypeid','propertylandusetypeid', 'storytypeid', 'airconditioningtypeid','architecturalstyletypeid', 'buildingclasstypeid', 'buildingqualitytypeid', 'typeconstructiontypeid']for c in properties.columns:properties[c]=properties[c].fillna(-1)if properties[c].dtype == 'object':lbl = LabelEncoder()lbl.fit(list(properties[c].values))properties[c] = lbl.transform(list(properties[c].values))if c in id_feature:lbl = LabelEncoder()lbl.fit(list(properties[c].values))properties[c] = lbl.transform(list(properties[c].values))dum_df = pd.get_dummies(properties[c])dum_df = dum_df.rename(columns=lambda x:c+str(x))properties = pd.concat([properties,dum_df],axis=1)properties = properties.drop([c], axis=1)#print np.get_dummies(properties[c])## Add Feature## error in calculation of the finished living area of homeproperties['N-LivingAreaError'] = properties['calculatedfinishedsquarefeet'] / properties['finishedsquarefeet12']## Make train and test dataframe#train = train.merge(properties, on='parcelid', how='left')sample['parcelid'] = sample['ParcelId']test = sample.merge(properties, on='parcelid', how='left')# drop out oulierstrain = train[train.logerror > -0.4]train = train[train.logerror < 0.419]train["transactiondate"] = pd.to_datetime(train["transactiondate"])train["Month"] = train["transactiondate"].dt.monthtrain["quarter"] = train["transactiondate"].dt.quartertest["Month"] = 10test['quarter'] = 4x_train = train.drop(['parcelid', 'logerror','transactiondate', 'propertyzoningdesc', 'propertycountylandusecode'], axis=1)y_train = train["logerror"].valuesx_test = test[x_train.columns]del test, train    print(x_train.shape, y_train.shape, x_test.shape)return x_train, y_train, x_testx_train, y_train, x_test = load_data()class Ensemble(object):def __init__(self, n_splits, stacker, base_models):self.n_splits = n_splitsself.stacker = stackerself.base_models = base_modelsdef fit_predict(self, X, y, T):X = np.array(X)y = np.array(y)T = np.array(T)folds = list(KFold(n_splits=self.n_splits, shuffle=True, random_state=2016).split(X, y))S_train = np.zeros((X.shape[0], len(self.base_models)))S_test = np.zeros((T.shape[0], len(self.base_models)))for i, clf in enumerate(self.base_models):S_test_i = np.zeros((T.shape[0], self.n_splits))for j, (train_idx, test_idx) in enumerate(folds):X_train = X[train_idx]y_train = y[train_idx]X_holdout = X[test_idx]y_holdout = y[test_idx]print ("Fit Model %d fold %d" % (i, j))clf.fit(X_train, y_train)y_pred = clf.predict(X_holdout)[:]                S_train[test_idx, i] = y_predS_test_i[:, j] = clf.predict(T)[:]S_test[:, i] = S_test_i.mean(axis=1)# results = cross_val_score(self.stacker, S_train, y, cv=5, scoring='r2')# print("Stacker score: %.4f (%.4f)" % (results.mean(), results.std()))# exit()self.stacker.fit(S_train, y)res = self.stacker.predict(S_test)[:]return res# rf params
rf_params = {}
rf_params['n_estimators'] = 50
rf_params['max_depth'] = 8
rf_params['min_samples_split'] = 100
rf_params['min_samples_leaf'] = 30# xgb params
xgb_params = {}
#xgb_params['n_estimators'] = 50
xgb_params['min_child_weight'] = 12
xgb_params['learning_rate'] = 0.37
xgb_params['max_depth'] = 6
xgb_params['subsample'] = 0.77
xgb_params['reg_lambda'] = 0.8
xgb_params['reg_alpha'] = 0.4
xgb_params['base_score'] = 0
#xgb_params['seed'] = 400
xgb_params['silent'] = 1# lgb params
lgb_params = {}
#lgb_params['n_estimators'] = 50
lgb_params['max_bin'] = 8
lgb_params['learning_rate'] = 0.37 # shrinkage_rate
lgb_params['metric'] = 'l1'          # or 'mae'
lgb_params['sub_feature'] = 0.35    
lgb_params['bagging_fraction'] = 0.85 # sub_row
lgb_params['bagging_freq'] = 40
lgb_params['num_leaves'] = 512        # num_leaf
lgb_params['min_data'] = 500         # min_data_in_leaf
lgb_params['min_hessian'] = 0.05     # min_sum_hessian_in_leaf
lgb_params['verbose'] = 0
lgb_params['feature_fraction_seed'] = 2
lgb_params['bagging_seed'] = 3# XGB model
xgb_model = XGBRegressor(**xgb_params)# lgb model
lgb_model = LGBMRegressor(**lgb_params)# RF model
rf_model = RandomForestRegressor(**rf_params)# ET model
et_model = ExtraTreesRegressor()# SVR model
# SVM is too slow in more then 10000 set
#svr_model = SVR(kernel='rbf', C=1.0, epsilon=0.05)# DecsionTree model
dt_model = DecisionTreeRegressor()# AdaBoost model
ada_model = AdaBoostRegressor()stack = Ensemble(n_splits=5,stacker=LinearRegression(),base_models=(rf_model, xgb_model, lgb_model, et_model, ada_model))y_test = stack.fit_predict(x_train, y_train, x_test)from datetime import datetime
print("submit...")
pre = y_test
sub = pd.read_csv('../input/sample_submission.csv')
for c in sub.columns[sub.columns != 'ParcelId']:sub[c] = pre
submit_file = '{}.csv'.format(datetime.now().strftime('%Y%m%d_%H_%M'))
sub.to_csv(submit_file, index=False,  float_format='%.4f')

转载于:https://blog.51cto.com/yixianwei/2156798

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/253844.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

静态时序分析——Timing borrow

Timing Borrow技术又称为cycle stealing技术&#xff0c;主要是利用latch的电平敏感特性&#xff0c;通过有效电平获取数据&#xff0c;通过无效电平保持被锁存的数据&#xff0c;主要用于解决路径时序不满足电路要求的情况。 通过TimingBorrow可以对电路进行加速,当路径延迟较…

homebrew 常用命令

安装&#xff08;需要 Ruby&#xff09;&#xff1a;ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/Go/install)" 搜索&#xff1a;brew search MySQL 查询&#xff1a;brew info mysql 主要看具体的信息&#xff0c;比如目前的版本&#xff0c…

从Mysql某一表中随机读取n条数据的SQL查询语句

若要在i ≤ R ≤ j 这个范围得到一个随机整数R &#xff0c;需要用到表达式 FLOOR(i RAND() * (j – i 1))。例如&#xff0c; 若要在7 到 12 的范围&#xff08;包括7和12&#xff09;内得到一个随机整数, 可使用以下语句&#xff1a; SELECT FLOOR(7 (RAND() * 6)); 以上摘…

基于MTD的NAND驱动开发(二)

基于MTD的NAND驱动开发(二) 基于MTD的NAND驱动开发(三) http://blog.csdn.net/leibniz_zsu/article/details/4977853 http://blog.csdn.net/leibniz_zsu/article/details/4977869 四、基于MTD的NAND 驱动架构 1 、platform_device 和platform_driver 的定义和注册 对于我们的…

静态时序分析——Data to data check

setup和hold的检查也有可能发生在任意两个数据端口&#xff0c;其中不包括时钟端口。 我们将其中一个端口&#xff08;pin&#xff09;设置为约束端口&#xff08;constrainted pin&#xff09;&#xff0c;就像触发器中的数据端口&#xff1b;将另一个一个端口&#xff08;pin…

开源数据库中间件-MyCa初探与分片实践

如今随着互联网的发展&#xff0c;数据的量级也是撑指数的增长&#xff0c;从GB到TB到PB。对数据的各种操作也是愈加的困难&#xff0c;传统的关系性数据库已经无法满足快速查询与插入数据的需求。这个时候NoSQL的出现暂时解决了这一危机。它通过降低数据的安全性&#xff0c;减…

【JAVA设计模式】外观模式(Facade Pattern)

一 定义 为子系统中的一组接口提供一个一致的界面。Facade模式定义了一个高层的接口&#xff0c;这个接口使得这一子系统更加easy使用。二 案例 一个子系统中拥有3个模块。每一个模块中都有3个方法。当中一个为client调用方法&#xff0c;其它两个则为各子模块间互相调用方法…

return的用处

#include "stdio.h" main() {int a,b1,c0;for(a1;a<5;a){ cca;}printf("%d",c);return ;printf("hello word"); } 输出结果是10并没有hello word&#xff1b;return将不会执行下面的语句。转载于:https://www.cnblogs.com/doublekai/p/6148…

静态时序分析——Clock Gating check

门控时钟是RTL级进行低功耗设计的最常用方法&#xff0c;能够有效降低动态功耗。在实际使用中&#xff0c;一般用ICG&#xff08;集成门控时钟单元&#xff09;来完成clock gating。ICG电路和时序如下&#xff1a; 通常来说&#xff0c;工艺库已经集成了ICG&#xff0c;在做门控…

U-boot中TFTP 解释

http://www.cnblogs.com/heaad/archive/2009/08/10/1542538.html

BlackHat Arsenal USA 2018 ToolsWatch黑客工具库

原文链接&#xff1a;https://medium.com/hack-with-github/black-hat-arsenal-usa-2018-the-w0w-lineup-7de9b6d32796 Black Hat Arsenal USA 2018 — The w0w lineup After the huge success of Black Hat Arsenal USA 2017, toolswatch has now announced the list of too…

SOA是什么

SOA是什么&#xff1f; SOA是面向服务的架构&#xff0c;是一个组件模型&#xff0c;它将应用程序的不同功能单元&#xff08;称为服务&#xff09;通过这些服务之间定义良好的接口和契约联系起来。接口是采用中立的方式进行定义的&#xff0c;它独立于实现服务的硬件平台、操作…

redis 优化

系统优化echo "vm.overcommit_memory1" > /etc/sysctl.conf 0&#xff0c; 表示内核将检查是否有足够的可用内存供应用进程使用&#xff1b;如果有足够的可用内存&#xff0c;内存申请允许&#xff1b;否则&#xff0c;内存申请失败&#xff0c;并把错误返回给应…

IC设计常见设计思想

速度与面积互换原则 所谓速度&#xff0c;是指整个工程稳定运行所能够达到的最高时钟频率&#xff0c;它不仅和电路内部各个寄存器的建立时间、保持时间以及外部器件接口的各种时序要求有关&#xff0c;而且还和两个紧邻的寄存器间的逻辑延时&#xff0c;走线延时有关。所谓面…

DM365 u-boot启动分析

http://www.61ic.com/Article/DaVinci/DM644X/201009/27429.html

(十三)Hibernate高级配置

配置数据库连接池 配置C3P0连接池。先导入c3p0包。然后在hibernate.cfg.xml文件中 &#xff0c;使用下面代码配置连接池<property name"hibernate.connection.provider_class">org.hibernate.connection.C3P0ConnectionProvider</property>可以通过下面的…

eclipse中如何配置tomcat

1.打开eclipse上面的Windows选项&#xff0c;选择Preferences>Server>Runtime Environments>Add 2.选择你电脑中安装的tomcat的版本我的是8所以我选的是Apache Tomcat v8.0 3,Next>Browse选择Tomcat的安装目录&#xff0c;选择jdk 4.Finish>OK tomcat配置完成。…

jsp调试小技巧

console.log($("#toolbar")); 打印对象可知道这个对象的参数信息转载于:https://www.cnblogs.com/chenweida/p/6149342.html

数字IC验证学习(一)

一、数据类型 1、logic logic类型只能有一个驱动。使用wire和reg的地方均可使用logic&#xff0c;但如双向总线等有多个驱动的地方&#xff0c;则不可使用logic。 2、二值逻辑 对于二值逻辑变量与DUT中的四值逻辑变量连接时&#xff0c;如果DUT中产生了X和Z&#xff0c;会被…

SecureCRT 配置文件中 找密码

打开本地电脑如下路径 C:\Users\XXX\AppData\Roaming\VanDyke\Config\Sessions 找到配置文件。 运行命令&#xff1a;python SecureCRTDecrypt.py [配置文件名称] 例如&#xff1a;python SecureCRTDecrypt.py 192.168.1.249.ini ssh root192.168.1.249 # 123456 即可得到密…