[pytorch、学习] - 5.5 卷积神经网络(LeNet)

参考

5.5 卷积神经网络(LeNet)

卷积层尝试解决两个问题:

  1. 卷积层保留输入形状,使图像的像素在高和宽两个方向上的相关性均可能被有效识别;
  2. 卷积层通过滑动窗口将同一卷积核和不同位置的输入重复计算,从而避免参数尺寸过大。

在这里插入图片描述

5.5.1 LeNet模型

LeNet分为卷积层块和全连接层块两个部分.

卷积层块的基本单位是卷积层后接最大池化层: 卷积层用来识别图像里的空间模式(线条和物体局部),之后最大池化用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单位重复堆叠构成。

在卷积层块中,每个卷积层都使用5×5的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。这是因为第二个卷积层比第一个卷积层的输入的高和宽要小,所以增加输出通道使两个卷积层的参数尺寸类似。卷积层块的两个最大池化层的窗口形状均为2×2,且步幅为2。由于池化窗口与步幅形状相同,池化窗口在输入上每次滑动所覆盖的区域互不重叠。

卷积层块的输出形状为(批量大小, 通道, 高, 宽)。当卷积层块的输出传入全连接层块时,全连接层块会将小批量中每个样本变平(flatten)。也就是说,全连接层的输入形状将变成二维,其中第一维是小批量中的样本,第二维是每个样本变平后的向量表示,且向量长度为通道、高和宽的乘积。全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。

下面通过Sequential类来实现LeNet模型

import time
import torch
import torch.nn as nn
import sys
sys.path.append("..")
import d2lzh_pytorch as d2ldevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')class LeNet(nn.Module):def __init__(self):super(LeNet, self).__init__()self.conv = nn.Sequential(nn.Conv2d(1, 6, 5),   # in_channels, out_channels, kernel_size: (1, 1, 28, 28) -> (6, 1, 24, 24)nn.Sigmoid(),nn.MaxPool2d(2, 2),   #  kernel_size, stride: (6, 24, 24) -> (6, 1,12, 12)nn.Conv2d(6, 16, 5),  # (6, 1, 12, 12) -> (16, 1, 8, 8)nn.Sigmoid(),nn.MaxPool2d(2, 2)    # (16, 1, 8, 8) -> (16, 1, 4, 4))self.fc = nn.Sequential(nn.Linear(16*4*4, 120), # (16, 1, 4, 4) -> (256) -> (120)nn.Sigmoid(),nn.Linear(120, 84),  # (120) -> (84)nn.Sigmoid(),nn.Linear(84, 10)  # (84) -> (10))def forward(self, img):# img: 1 * 1 * 28 * 28feature = self.conv(img)  output = self.fc(feature.view(img.shape[0], -1))return output
net = LeNet()
print(net)

在这里插入图片描述
可以看到,在卷积层块中输入的高和宽在逐层减小。卷积层由于使用高和宽均为5的卷积核,从而将高和宽分别减小4,而池化层则将高和宽减半,但通道数则从1增加到16。全连接层则逐层减少输出个数,直到变成图像的类别数10。

5.5.2 获取数据和训练模型

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size = batch_size)
# 使用GPU计算
def evaluate_accuracy(data_iter, net, device=None):if device is None and isinstance(net, torch.nn.Module):# 如果没指定device就使用net的devicedevice = list(net.parameters())[0].deviceacc_sum, n = 0.0, 0with torch.no_grad():for X, y in data_iter:if isinstance(net, torch.nn.Module):net.eval() # 评估模式, 这会关闭dropoutacc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()net.train() # 改回训练模式else: # 自定义的模型, 3.13节之后不会用到, 不考虑GPUif('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数# 将is_training设置成Falseacc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() else:acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() n += y.shape[0]return acc_sum / n
def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):net = net.to(device)print("training on ", device)loss = torch.nn.CrossEntropyLoss()for epoch in range(num_epochs):train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()for X, y in train_iter:X = X.to(device)y = y.to(device)y_hat = net(X)l = loss(y_hat, y)optimizer.zero_grad()l.backward()optimizer.step()train_l_sum += l.cpu().item()train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()n += y.shape[0]batch_count += 1test_acc = evaluate_accuracy(test_iter, net)print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'% (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))
lr, num_epochs = 0.001, 10
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/250132.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[pytorch、学习] - 5.6 深度卷积神经网络(AlexNet)

参考 5.6 深度卷积神经网络(AlexNet) 在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机。虽然LeNet可以在早期的小数据集上取得好的成绩,但是在更大的真实数据集上的表现并不尽如人意。一方面,神经网络计算复杂。虽然20世纪…

Springboot---Model,ModelMap,ModelAndView

Model(org.springframework.ui.Model) Model是一个接口,包含addAttribute方法,其实现类是ExtendedModelMap。 ExtendedModelMap继承了ModelMap类,ModelMap类实现了Map接口。 public class ExtendedModelMap extends M…

[pytorch、学习] - 5.7 使用重复元素的网络(VGG)

参考 5.7 使用重复元素的网络(VGG) AlexNet在LeNet的基础上增加了3个卷积层。但AlexNet作者对它们的卷积窗口、输出通道数和构造顺序均做了大量的调整。虽然AlexNet指明了深度卷积神经网络可以取得出色的结果,但并没有提供简单的规则以指导…

[pytorch、学习] - 5.8 网络中的网络(NiN)

参考 5.8 网络中的网络(NiN) 前几节介绍的LeNet、AlexNet和VGG在设计上的共同之处是:先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。其中,AlexNet和VGG对LeNet的改进主要在于如何…

[pytorch、学习] - 5.9 含并行连结的网络(GoogLeNet)

参考 5.9 含并行连结的网络(GoogLeNet) 在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet的网络结构大放异彩。它虽然在名字上向LeNet致敬,但在网络结构上已经很难看到LeNet的影子。GoogLeNet吸收了NiN中网络串联网络的思…

mybits注解详解

一、mybatis 简单注解 关键注解词 : Insert : 插入sql , 和xml insert sql语法完全一样 Select : 查询sql, 和xml select sql语法完全一样 Update : 更新sql, 和xml update sql语法完全一样 Delete : 删除sql, 和xml d…

使用python装饰器计算函数运行时间的实例

使用python装饰器计算函数运行时间的实例 装饰器在python里面有很重要的作用, 如果能够熟练使用,将会大大的提高工作效率 今天就来见识一下 python 装饰器,到底是怎么工作的。 本文主要是利用python装饰器计算函数运行时间 一些需要精确的计算…

[pytorch、学习] - 9.1 图像增广

参考 9.1 图像增广 在5.6节(深度卷积神经网络)里我们提过,大规模数据集是成功应用神经网络的前提。图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不相同的训练样本,从而扩大训练数据集的规模。图像增广的另一种解释是,随机改变训练样本可以…

mysql绿色版安装

导读:MySQL是一款关系型数据库产品,官网给出了两种安装包格式:MSI和ZIP。MSI格式是图形界面安装方式,基本只需下一步即可,这篇文章主要介绍ZIP格式的安装过程。ZIP Archive版是免安装的。只要解压就行了。 一、首先下…

[pytorch、学习] - 9.2 微调

参考 9.2 微调 在前面得一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型。我们还描述了学术界当下使用最广泛规模图像数据集ImageNet,它有超过1000万的图像和1000类的物体。然而,我们平常接触到数据集的规模通常在这两者之间。 假设我们想从图…

关于mac机抓包的几点基础知识

1. 我使用的抓包工具为WireShark,以下操作按我当前的版本(Version 2.6.1)做的,以前的版本或者以后的版本可能有稍微的区别。 2. 将mac设置为热点:打开系统偏好设置,点击共享: 然后点击WIFI选项,设置WIFI名…

SpringBoot启动如何加载application.yml配置文件

一、前言 在spring时代配置文件的加载都是通过web.xml配置加载的(Servlet3.0之前)&#xff0c;可能配置方式有所不同&#xff0c;但是大多数都是通过指定路径的文件名的形式去告诉spring该加载哪个文件&#xff1b; <context-param><param-name>contextConfigLocat…

阿里云服务器端口开放对外访问权限

登陆阿里云管理控制台 点击自己的实例 点击安全组配置 点击配置规则 点击添加安全组规则 配置出入放心&#xff0c;和开放的端口号&#xff0c;以及那些网段可以访问&#xff0c;这里设置所有网段都可以访问 转自&#xff1a;https://jingyan.baidu.com/article/95c9d20d624d1e…

PageHelper工作原理

数据分页功能是我们软件系统中必备的功能&#xff0c;在持久层使用mybatis的情况下&#xff0c;pageHelper来实现后台分页则是我们常用的一个选择&#xff0c;所以本文专门类介绍下。 PageHelper原理 相关依赖 <dependency><groupId>org.mybatis</groupId>&…

10-多写一个@Autowired导致程序崩了

再是javaweb实验六中&#xff0c;是让我们改代码&#xff0c;让它跑起来&#xff0c;结果我少注释了一个&#xff0c;导致一直报错&#xff0c;检查许久没有找到&#xff0c;最后通过代码替换逐步查找&#xff0c;才发现问题。 转载于:https://www.cnblogs.com/zhumengdexiaoba…

springboot---整合redis

pom.xml新增 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency>代码结构如下 其中redis.yml是连接redis的配置文件&#xff0c;RedisConfig.java是java配置…

[Head First Java] - Swing做一个简单的客户端

参考 - P487 1. vscode配置java的格式 点击左下角齿轮 -> 设置 -> 打开任意的setting.json输入如下代码 {code-runner.executorMap": {"java": "cd $dir && javac -encoding utf-8 $fileName && java $fileNameWithoutExt"},…

计算机网络知识总结

一 OSI与TCP/IP各层的结构与功能&#xff0c;都有哪些协议 OSI的七层体系结构概念清楚&#xff0c;理论也很完整&#xff0c;但是它比较复杂而且不实用。在这里顺带提一下之前一直被一些大公司甚至一些国家政府支持的OSI失败的原因&#xff1a; OSI的专家缺乏实际经验&#xff…

[Head First Java] - 给线程命名

参考 - P503 public class RunThreads implements Runnable {public static void main (String[] args) {RunThreads runner new RunThreads();Thread alpha new Thread(runner);Thread beta new Thread(runner);alpha.setName("Alpha thread");beta.setName(&qu…

快速排序的C++版

int Partition(int a[], int low, int high) {int x a[high];//将输入数组的最后一个数作为主元&#xff0c;用它来对数组进行划分int i low - 1;//i是最后一个小于主元的数的下标for (int j low; j < high; j)//遍历下标由low到high-1的数{if (a[j] < x)//如果数小于…