离散Hopfield神经网络的联想记忆与matlab实现

1案例背景

1.1离散Hopfield神经网络概述

        Hopfield网络作为一种全连接型的神经网络,曾经为人工神经网络的发展开辟了新的研究途径。它利用与阶层型神经网络不同的结构特征和学习方法,模拟生物神经网络的记忆机理,获得了令人满意的结果。这一网络及学习算法最初是由美国物理学家J.JHopfield于1982年首先提出的,故称为Hopfield神经网络。
        Hopfield最早提出的网络是二值神经网络,神经元的输出只取1和一1,所以,也称离散Hopfield神经网络(Discrete Hopfield Neural Network, DHNN)。在离散Hopfield网络中,所采用的神经元是二值神经元,因此,所输出的离散值1和一1分别表示神经元处于激活和抑制状态。
        1.网络结构
        DHNN是一种单层、输出为二值的反馈网络。由三个神经元组成的离散 Hopfield神经网络的结构如图9-1所示。

        在图9-1中,第0层仅仅作为网络的输入,它不是实际神经元,所以无计算功能;第1层是神经元,故而执行对输人信息与权系数的乘积求累加和,并经非线性函数f处理后产生输出信息。f是一个简单的阙值函数,如果神经元的输出信息大于阈值θ,那么,神经元的输出取值为1;小于阈值0,则神经元的输出取值为—1。对于二值神经元,它的计算公式如下:

2.网络工作方式
        Hopfield网络按动力学方式运行,其工作过程为神经元状态的演化过程,即从初始状态按“能量”(Lyapunov函数)减小的方向进行演化,直到达到稳定状态,稳定状态即为网络的输出。
Hopfield网络的工作方式主要有两种形式:
        ①串行(异步)工作方式。在任一时刻t,只有某一神经元ü(随机的或确定的选择)依式(9-4)与式(9-5)变化,而其他神经元的状态不变。
        ②并行(同步)工作方式。在任一时刻t,部分神经元或全部神经元的状态同时改变。下面以串行(异步)工作方式为例说明Hopfield网络的运行步骤:
        步骤1:对网络进行初始化。
        步骤2:从网络中随机选取一个神经元i。步骤3:计算该神经元主的输入ui(t)。
        步骤4:计算该神经元i的输出v;(t+1),此时网络中其他神经元的输出保持不变。
        步骤5:判断网络是否达到稳定状态,若达到稳定状态或满足给定条件则结束;否则转到步骤2继续运行。
        这里网络的稳定状态定义为;若网络从某一时刻以后,状态不再发生变化,则称网络处于稳定状态。

        3.网络稳定性
        从 DHNN的结构可以看出:它是一种多输人,含有阈值的二值非线性动态系统。在动态系统中,平衡稳定状态可以理解为系统某种形式的能量函数在系统运动过程中,其能量值不断减小,最后处于最小值。
        Coben和 Grossberg在1983年给出了关于 Hopfield网络稳定的充分条件,他们指出:如果 Hopfield网络的权系数矩阵W是一个对称矩阵,并且对角线元素为0,则这个网络是稳定的。即在权系数矩阵W中,如果

        则Hopfield网络是稳定的。详细推导过程见参考文献[1]~~[3]。
        应该指出,这只是 Hopfield网络稳定的充分条件,而不是必要条件。在实际中有很多稳定的Hopfield网络,但是它们并不满足权系数矩阵W是对称矩阵这一条件。

1.2数字识别概述

        在日常生活中,经常会遇到带噪声字符的识别问题,如交通系统中汽车车号和汽车牌照,由于汽车在使用过程中,要经受自然环境的风吹日晒,造成字体模糊不清,难以辨认。如何从这些残缺不全的字符中攫取完整的信息,是字符识别的关键问题。作为字符识别的组成部分之一,数字识别在邮政、交通及商业票据管理方面有着极高的应用价值。
        目前有很多种方法用于字符识别,主要分为神经网络识别,概率统计识别和模糊识别等。传统的数字识别方法在有干扰的情况下不能很好地对数字进行识别,而离散型Hopfield神经网络具有联想记忆的功能,利用这一功能对数字进行识别可以取得令人满意的效果,并且计算的收敛速度很快。

1.3 问题描述

        根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。

2模型建立

2.1设计思路

        假设网络由0~9共10个稳态构成,每个稳态用10×10的矩阵表示。该矩阵直观地描述模拟阿拉伯数字,即将数字划分成10×10的矩阵,有数字的部分用1表示,空白部分用-1表示,如图9-2所示。网络对这10个稳态即10个数字(点阵)具有联想记忆的功能,当有带噪声的数字点阵输入到该网络时,网络的输出便可以得到最接近的目标向量(即10个稳态),从而达到正确识别的效果。

 

2.2 设计步骤

        在此思路的基础上,设计Hopfield网络需要经过以下几个步骤,如图9-3所示。

        1、输入输出设计——设计数字点阵(0~9)
        如图9-2所示,有数字的部分用1表示,空白部分用-1表示,即可得到数字1和数字2的点阵:

array_one = 
[-1	-1	-1	-1	1	1	-1	-1	-1	-1
-1	-1	-1	-1	1	1	-1	-1	-1	-1
-1	-1	-1	-1	1	1	-1	-1	-1	-1
-1	-1	-1	-1	1	1	-1	-1	-1	-1
-1	-1	-1	-1	1	1	-1	-1	-1	-1
-1	-1	-1	-1	1	1	-1	-1	-1	-1
-1	-1	-1	-1	1	1	-1	-1	-1	-1
-1	-1	-1	-1	1	1	-1	-1	-1	-1
-1	-1	-1	-1	1	1	-1	-1	-1	-1
-1	-1	-1	-1	1	1	-1	-1	-1	-1];
array_two = 
[-1	1	1	1	1	1	1	1	1	-1
-1	1	1	1	1	1	1	1	1	-1
-1	-1	-1	-1	-1	-1	-1	1	1	-1
-1	-1	-1	-1	-1	-1	-1	1	1	-1
-1	1	1	1	1	1	1	1	1	-1
-1	1	1	1	1	1	1	1	1	-1
-1	1	1	-1	-1	-1	-1	-1	-1	-1
-1	1	1	-1	-1	-1	-1	-1	-1	-1
-1	1	1	1	1	1	1	1	1	-1
-1	1	1	1	1	1	1	1	1	-1];

        其他的数字点阵以此类推。

        2.创建 Hopfield网络
        MATLAB神经网络工具箱为Hopfield网络提供了一些工具函数。10个数字点阵,即Hopfield网络的目标向量确定以后,可以借助这些函数,方便地创建Hopfield网络。具体过程见9.4节。
        3.产生带噪声的数字点阵
        带噪声的数字点阵,即点阵的某些位置的值发生了变化。模拟产生带噪声的数字矩阵方法有很多种,由于篇幅所限,本书仅列举两种比较常见的方法:固定噪声产生法和随机噪声产生法。
        4.数字识别测试
        将带噪声的数字点阵输入到创建好的Hopfield网络,网络的输出是与该数字点阵最为接近的目标向量,即0~9中的某个数字,从而实现联想记忆的功能。
        5.结果分析
        对测试的结果进行分析、比较,通过大量的测试来验证Hopfield 网络用于数字识别的可行性与有效性。

3 Hopfield网络的神经网络工具箱函数

        MATLAB神经网络工具箱中包含了许多用于Hopfield网络分析与设计的函数,本节将详细说明常用的两个函数的功能、调用格式以及参数意义等。

3.1 Hopfield网络创建函数

        newhop()函数用于创建一个离散型 Hopfield神经网络,其调用格式为:

net = newhop(T);

其中,T是具有Q个目标向量的RXQ矩阵(元素必须为-1或1);net为生成的神经网络,具有在T中的向量上稳定的点。
        Hopfield神经网络仅有一层,其激活函数用satlins()函数。9.3.2 Hopfield网络仿真函数
sim()函数用于对神经网络进行仿真,其调用格式为:

[Y,Af,E, perf] = sim(net,P.Ai,T)
[Y,Af,E,perf] =sim(net,{Q TS} ,Ai,T)

        其中,P,Q为测试向量的个数;Ai表示初始的层延时,默认为0;T表示测试向量(矩阵或元胞数组形式);TS为测试的步数;Y为网络的输出矢量;Af为训练终止时的层延迟状态;E为误差矢量; perf为网络的性能。

        函数中用到的参数采取了两种不同的形式进行表示:矩阵和元胞数组。矩阵的形式只用于仿真的时间步长TS=1的场合,元胞数组形式常用于一些没有输入信号的神经网络。

4 MATLAB 实现

        利用MATLAB神经网络工具箱提供的函数,将设计步骤一一在MATLAB环境下实现,matlab代码如下:

%% Hopfield神经网络的联想记忆——数字识别%% 清空环境变量
clear all
clc%% 数据导入
load data1 array_one
load data2 array_two%% 训练样本(目标向量)T = [array_one;array_two]';%% 创建网络net = newhop(T);%% 数字1和2的带噪声数字点阵(固定法)
load data1_noisy noisy_array_one
load data2_noisy noisy_array_two%% 数字1和2的带噪声数字点阵(随机法)% noisy_array_one=array_one;
% noisy_array_two=array_two;
% for i = 1:100
%     a = rand;
%     if a < 0.3
%        noisy_array_one(i) = -array_one(i);
%        noisy_array_two(i) = -array_two(i);
%     end
% end%% 数字识别% 单步仿真——TS = 1(矩阵形式)
% identify_one = sim(net,10,[],noisy_array_one');  
% 多步仿真——元胞数组形式
noisy_one = {(noisy_array_one)'};                    
identify_one = sim(net,{10,10},{},noisy_one);
identify_one{10}';
noisy_two = {(noisy_array_two)'};
identify_two = sim(net,{10,10},{},noisy_two);
identify_two{10}';%% 结果显示
Array_one = imresize(array_one,20);
subplot(3,2,1)
imshow(Array_one)
title('标准(数字1)') 
Array_two = imresize(array_two,20);
subplot(3,2,2)
imshow(Array_two)
title('标准(数字2)') 
subplot(3,2,3)
Noisy_array_one = imresize(noisy_array_one,20);
imshow(Noisy_array_one)
title('噪声(数字1)') 
subplot(3,2,4)
Noisy_array_two = imresize(noisy_array_two,20);
imshow(Noisy_array_two)
title('噪声(数字2)')
subplot(3,2,5)
imshow(imresize(identify_one{10}',20))
title('识别(数字1)')
subplot(3,2,6)
imshow(imresize(identify_two{10}',20))
title('识别(数字2)')

 

5案例扩展

5.1识别效果讨论

        图9-5所示是噪声强度为0.1(即10%的数字点阵位置值发生了改变)时的识别效果,从图中可以看出识别效果很好。进一步的研究发现,随着噪声强度的增加,识别效果逐渐下降。噪声强度为0.2和0.3时的识别结果分别如图9-6和图9-7所示,从图中不难看出,当噪声强度为0.3时,Hopfield已经很难对数字进行识别。

 

5.2应用扩展

        离散型 Hopfield神经网络具有联想记忆的功能。近年来,越来越多的研究人员尝试着将Hopfield神经网络应用到各个领域,因此解决了很多传统方法难以解决的问题,如水质评价、发电机故障诊断、项目风险分析等。
        将一些优化算法与离散Hopfield神经网络相结合,可以使其联想记忆能力更强,应用效果更为突出。例如,由于一般离散Hopfield神经网络存在很多伪稳定点,网络很难达到真正的稳态。将遗传算法应用到离散Hopfield神经网络中,利用遗传算法的全局搜索能力,对Hopfield联想记忆稳态进行优化,使待联想的模式跳出伪稳定点,从而使Hopfield网络在较高噪信比的情况下保持较高的联想成功率。

完整数据文件和代码可以戳这个链接下载:

https://download.csdn.net/download/weixin_44209907/88152893

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/24928.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

react中hooks的理解与使用

一、作用 我们知道react组件有两种写法一种是类组件&#xff0c;另一种是函数组件。而函数组件是无状态组件&#xff0c;如果我们要想改变组件中的状态就无法实现了。为此&#xff0c;在react16.8版本后官方推出hooks&#xff0c;用于函数组件更改状态。 二、常用API 1、use…

【css】css隐藏元素

display:none&#xff1a;可以隐藏元素。该元素将被隐藏&#xff0c;并且页面将显示为好像该元素不在其中。visibility:hidden&#xff1a; 可以隐藏元素。但是&#xff0c;该元素仍将占用与之前相同的空间。元素将被隐藏&#xff0c;但仍会影响布局。 代码&#xff1a; <!…

go编译文件

1.编译go文件 go build [go文件]2.执行文件编译文件 ./demo [demo为go文件名称]

当服务器域名出现解析错误的问题该怎么办?

​  域名解析是互联网用户接收他们正在寻找的域的地址的过程。更准确地说&#xff0c;域名解析是人们在浏览器中输入时使用的域名与网站IP地址之间的转换过程。您需要站点的 IP 地址才能知道它所在的位置并加载它。但&#xff0c;在这个过程中&#xff0c;可能会出现多种因素…

web服务

静态网页与动态网页的区别 在网站设计中&#xff0c;静态网页是网站建设的基础&#xff0c;纯粹 HTML 格式的网页通常被称为“静态网页”&#xff0c;静态网页是标准的 HTML 文件&#xff0c;它的文件扩展名是 .htm、.html&#xff0c;可以包含文本、图像、声音、FLASH 动画、…

MySQL(1)

MySQL创建数据库和创建数据表 创建数据库 1. 连接 MySQL mysql -u root -p 2. 查看当前的数据库 show databases; 3. 创建数据库 create database 数据库名; 创建数据库 4. 创建数据库时设置字符编码 create database 数据库名 character set utf8; 5. 查看和显示…

【前瞻】视频技术的发展趋势讨论以及应用场景

视频技术的发展可以追溯到19世纪初期的早期实验。到20世纪初期&#xff0c;电视技术的发明和普及促进了视频技术的进一步发展。 1&#xff09;数字化&#xff1a;数字化技术的发明和发展使得视频技术更加先进。数字电视信号具有更高的清晰度和更大的带宽&#xff0c;可以更快地…

Spring源码解析(七):bean后置处理器AutowiredAnnotationBeanPostProcessor

Spring源码系列文章 Spring源码解析(一)&#xff1a;环境搭建 Spring源码解析(二)&#xff1a;bean容器的创建、默认后置处理器、扫描包路径bean Spring源码解析(三)&#xff1a;bean容器的刷新 Spring源码解析(四)&#xff1a;单例bean的创建流程 Spring源码解析(五)&…

SSE技术和WebSocket技术实现即时通讯

文章目录 一、SSE1.1 什么是SSE1.2 工作原理1.3 特点和适用场景1.4 API用法1.5 代码实现 二、WebSocket2.1 什么是WebSocket2.2 工作原理2.3 特点和适用场景2.4 API用法2.5 代码实现 三、SSE与WebSocket的比较 当涉及到实现实时通信的Web应用程序时&#xff0c;两种常见的技术选…

Agile manifesto principle (敏捷宣言的原则)

Agile Workflow Agile在管理中越来越受推崇&#xff0c;最初是由于传统的软件开发管理方式&#xff08;瀑布模型&#xff09;面对日益复杂的需求&#xff0c;无法Delivery令人满意的结果&#xff0c;经过总结探索&#xff0c;2001年&#xff0c;由行业代表在一次聚会中提出Agil…

桥接模式(C++)

定义 将抽象部分(业务功能)与实现部分(平台实现)分离&#xff0c;使它们都可以独立地变化。 使用场景 由于某些类型的固有的实现逻辑&#xff0c;使得它们具有两个变化的维度&#xff0c;乃至多个纬度的变化。如何应对这种“多维度的变化”?如何利用面向对象技术来使得类型…

Elasticsearch 商业启示

上月的“红帽事件”&#xff0c;说明开源软件的“客服模式”行不通&#xff0c;那么&#xff0c;开源软件如何赚钱呢&#xff1f;既不能卖软件&#xff0c;又不能卖支持服务&#xff0c;该怎么办呢&#xff1f;我现在的看法是&#xff0c;只剩下一种模式是可行的&#xff0c;开…

博客项目测试报告

✏️作者&#xff1a;银河罐头 &#x1f4cb;系列专栏&#xff1a;JavaEE &#x1f332;“种一棵树最好的时间是十年前&#xff0c;其次是现在” 目录 一、项目背景二、项目功能三、测试计划一&#xff09;功能测试二&#xff09;自动化测试三&#xff09;性能测试编写性能测试…

Vue3 第一节 Vue3简介以及创建Vue3工程

1.Vue3简介以及Vue3带来了什么 2.创建Vue3.0工程并分析Vue3工程结构 3.setup函数 4.ref函数 5.reactive函数 一.Vue3简介以及Vue3带来了什么 ① Vue3简介 2020年9月18日&#xff0c;Vue.js发布3.0版本&#xff0c;代号&#xff1a;One Piece&#xff08;海贼王&#xff0…

auto-changelog的简单使用

auto-changelog的简单使用 自动化生成Git提交记录&#xff0c;CHANGELOG.md文件 github&#xff1a;https://github.com/cookpete/auto-changelog 安装 npm install -g auto-changelog配置脚本 package.json文件下 "scripts": {"changelog": "aut…

IntelliJ IDEA 如何优雅的添加文档注释(附详细图解)

IntelliJ IDEA 如何优雅的添加文档注释&#xff08;附详细图解&#xff09; &#x1f4cc;提要✍✍类注释✍✍方法注释 &#x1f4cc;提要 在开发过程中&#xff0c;最常用的注释有两种&#xff1a;类注释和方法注释&#xff0c;分别是为类和方法添加作者、日期、版本号、描述等…

小程序的 weiui的使用以及引入

https://wechat-miniprogram.github.io/weui/docs/quickstart.html 网址 1.点进去&#xff0c;在app.json里面配置 在你需要的 页面的 json里面配置&#xff0c;按需引入 然后看文档&#xff0c;再在你的 wxml里面使用就好了

2023年8月初补题

看这个人的专栏 https://blog.csdn.net/qq_42555009/category_8770183.html 有一定思维难度&#xff0c;贪心&#xff0c;用multiset实现 翻译&#xff1a; 链接&#xff1a;https://ac.nowcoder.com/acm/contest/33187/H 来源&#xff1a;牛客网 在夜之城的中心有一座高大…

协议,序列化,反序列化,Json

文章目录 协议序列化和反序列化网络计算器protocol.hppServer.hppServer.ccClient.hppClient.cclog.txt通过结果再次理解通信过程 Json效果 协议 协议究竟是什么呢&#xff1f;首先得知道主机之间的网络通信交互的是什么数据&#xff0c;像平时使用聊天APP聊天可以清楚&#x…

迭代器模式(Iterator)

迭代器模式是一种行为设计模式&#xff0c;可以在不暴露底层实现(列表、栈或树等)的情况下&#xff0c;遍历一个聚合对象中所有的元素。 Iterator is a behavior design pattern that can traverse all elements of an aggregate object without exposing the internal imple…