6 areas of artificial intelligence to watch closely 需要密切关注的六大人工智能/机器学习领域

近段时间,有许多关于人工智能公认定义的争论。有些人认为人工智能就是“认知计算”或是“机器智能”,而另一些人则把它与“机器学习”的概念混淆了。然而,人工智能并不是特指某种技术,它实际上是一个由多门学科组成的广阔领域,包括机器人学和机器学习等。人工智能的终极目标是让机器替代人类去完成需要认知能力的任务。为了实现这一目标,机器必须自动学习掌握能力,而不仅仅是执行程序员编写的命令。

人工智能在过去的十年里取得了令人叹为观止的进步,例如自动驾驶汽车、语音识别和语音合成。在此背景之下,人工智能这一话题越来越多地出现在同事和家人的闲谈之间,人工智能技术已经渗透到他们生活的角角落落。与此同时,流行媒体几乎每天也在报道人工智能和技术巨头们,介绍他们在人工智能领域的长期战略。一些投资者和企业家渴望了解如何从这个新领域挖掘价值,大多数人还是绞尽脑汁思考究竟人工智能会改变什么。此外,各国政府也正在努力应对自动化给社会带来的影响。

其中,人工智能的六大领域在未来可能对数字产品和数字服务产生重要的影响。作者一一列举了这六个方向,解释了它们的重要性,目前的应用场景,并列举出正在使用的公司和研究机构。


强化学习


强化学习是一种通过实验和错误来学习的方法,它受人类学习新技能的过程启发。在典型的强化学习案例中,代理者通过观察当前所处的状态,进而采取行动使得长期奖励的结果最大化。每执行一次动作,代理者都会收到来自环境的反馈信息,因此它能判断这次动作带来的效果是积极的还是消极的。在这个过程中,代理者需要平衡根据经验寻找最佳策略和探索新策略两方面,以期实现最终的目标。Google的DeepMind团队在Atari游戏和围棋对抗中都运用了强化学习的技术。在真实场景中,强化学习有被用来提高Google数据中心的能源利用率。强化学习技术为这套冷却系统节省了约40%的能耗。强化学习有一个非常重要的优势,它的代理者能以低廉的代价模拟生成大量的训练数据。相比有监督的深度学习任务,这个优势非常明显,节省了一大笔人工标注数据的费用。

应用:包括城市道路的自动驾驶;三维环境的导航;多个代理者在同样的环境中交互和学习等

主要研究人员: Pieter Abbeel (OpenAI), David Silver, Nando de Freitas, Raia Hadsell (Google DeepMind), Carl Rasmussen (Cambridge), Rich Sutton (Alberta), John Shawe-Taylor (UCL) 等

技术公司代表: Google DeepMind, Prowler.io, Osaro, MicroPSI, Maluuba/Microsoft, NVIDIA, Mobileye等


生成模型


不同于用来完成分类和回归任务的判别模型,生成模型从训练样本中学到一个概率分布。通过从高维的分布中采样,生成模型输出与训练样本类似的新样本。这也意味着,若生成模型的训练数据是脸部的图像集,那么训练后得到的模型也能输出类似于脸的合成图片。细节内容可以参考Ian Goodfellow的文章。他提出的生成对抗模型(GAN)的结构当下在学术界非常的火热,因为它给无监督学习提供了一种新思路。GAN结构用到了两个神经网络:一个是生成器,它负责将随机输入的噪声数据合成为新的内容(比如合成图片),另一个是判别器,负责学习真实的图片并判断生成器生成的内容是否以假乱真。对抗训练可以被认为是一类游戏,生成器必须反复学习用随机噪音数据合成有意义的内容,直到判别器无法区分合成内容的真伪。这套框架正在被扩展应用到许多数据模式和任务中。

应用:仿真时间序列的特征(例如,在强化学习中规划任务);超分辨率图像;从二维图像复原三维结构;小规模标注数据集的泛化;预测视频的下一帧;生成自然语言的对话内容;艺术风格迁移;语音和音乐的合成

技术公司代表: Twitter Cortex, Adobe, Apple, Prisma, Jukedeck, Creative.ai, Gluru, Mapillary, Unbabel

主要研究人员: Ian Goodfellow (OpenAI), Yann LeCun 和 Soumith Chintala (Facebook 人工智能研究院), Shakir Mohamed 和 Aäron van den Oord (Google DeepMind)等等


记忆网络


为了让人工智能系统像人类一样能够适应各式各样的环境,它们必须持续不断地掌握新技能,并且记住如何在未来的场景中应用这些技能。传统的神经网络很难掌握一系列的学习任务。这项缺点被科学家们称作是灾难性遗忘。其中的难点在于当一个神经网络针对A任务完成训练之后,若是再训练它解决B任务,则网络模型的权重值不再适用于任务A。

目前,有一些网络结构能够让模型具备不同程度的记忆能力。其中包括长短期记忆网络(一种递归神经网络)可以处理和预测时间序列;DeepMind团队的微神经计算机,它结合了神经网络和记忆系统,以便于从复杂的数据结构中学习;渐进式神经网络,它学习各个独立模型之间的侧向关联,从这些已有的网络模型中提取有用的特征,用来完成新的任务。

应用:训练能够适应新环境的代理者;机器人手臂控制任务;自动驾驶车辆;时间序列预测(如金融市场、视频预测);理解自然语言和预测下文。

技术公司代表: Google DeepMind, NNaisense, SwiftKey/Microsoft Research.

主要研究人员: Alex Graves, Raia Hadsell, Koray Kavukcuoglu (Google DeepMind), Jürgen Schmidhuber (IDSAI), Geoffrey Hinton (Google Brain/Toronto)


微数据学习微模型


一直以来深度学习模型都是需要堆积大量的训练数据才能达到最佳的效果。比如,某只参加ImageNet挑战赛的团队使用了120万张分布于1000个类别的人工标注图像训练模型。离开大规模的训练数据,深度学习模型就不会收敛到最优值,也无法在语音识别、机器翻译等复杂的任务上取得好效果。数据量需求的增长往往发生在用单个神经网络模型处理端到端的情况下,比如输入原始的语音片段,要求输出转换后的文字内容。这个过程与多个网络协同工作各处理一步中间结果不同(比如,原始语音输入→音素→词→文本输出)。如果我们想用人工智能系统解决训练数据稀缺的任务时,希望模型训练用到的样本越少越好。当训练数据集较小时,过拟合、异常值干扰、训练集和测试集分布不一致等问题都会接踵而至。另一种方法是将在其它任务上训练好的模型迁移到新的任务中,这种方法被称为是迁移学习。

一个相关的问题是用更少的模型参数建立更小的深学习架构,而模型的效果却保持最佳。这种技术的优势在于更高效的分布式训练过程,因为训练过程中需要传输的参数减少了,并且能够方便地将模型部署在内存大小受限制的嵌入式硬件上。

应用:训练浅层模型来模拟在大规模的已标注训练数据集上训练得到的深度网络模型;构建效果相当但参数更少的模型结构(如SqueezeNet);机器翻译

技术公司代表: Geometric Intelligence/Uber, DeepScale.ai, Microsoft Research, Curious AI Company, Google, Bloomsbury AI

主要研究人员: Zoubin Ghahramani (Cambridge), Yoshua Bengio (Montreal), Josh Tenenbaum (MIT), Brendan Lake (NYU), Oriol Vinyals (Google DeepMind), Sebastian Riedel (UCL)


学习/推理硬件


促进人工智能发展的催化剂之一就是图形处理器(GPU)的升级,不同于CPU的顺序执行模式,GPU支持大规模的并行架构,可以同时处理多个任务。鉴于神经网络必须用大规模(且高维度)数据集训练,GPU的效率远高于CPU。这就是为什么自从2012年第一个GPU训练的神经网络模型——AlexNet公布之后,GPU已经成为名副其实的淘金铁锹。NVIDIA在2017年继续领跑行业,领先于Intel、Qualcomm、AMD和后起之秀Google。

然而,GPU并非专为模型训练或预测而设计,它原本是用于视频游戏的图像渲染。GPU具有高精度计算的能力,却遭遇内存带宽和数据吞吐量的问题。这为Google之类的大公司和许多小型创业公司开辟了新领域,它们为高维机器学习任务设计和制造处理芯片。芯片设计的改进点包括更大的内存带宽,图计算代替了向量计算(GPU)和矢量计算(CPU),更高的计算密度,更低的能源消耗。这些改进令人感到兴奋,因为最终又反哺到使用者的身上:更快和更有效的模型训练→更好的用户体验→用户更多的使用产品→收集更大的数据集→通过优化模型提高产品的性能。因此,那些训练和部署模型更快的系统占据显著的优势。

应用:模型的快速训练;低能耗预测运算;持续性监听物联网设备;云服务架构;自动驾驶车辆;机器人

技术公司代表: Graphcore, Cerebras, Isocline Engineering, Google (TPU), NVIDIA (DGX-1), Nervana Systems (Intel), Movidius (Intel), Scortex


仿真环境


正如之前提到,为人工智能系统准备训练数据很具有挑战性。而且,若要将人工智能系统应用到实际生活中,它必须具有适用性。因此,开发数字环境来模拟真实的物理世界和行为将为我们提供测试人工智能系统适应性的机会。这些环境给人工智能系统呈现原始像素,然后根据设定的目标而采取某些行动。在这些模拟环境中的训练可以帮助我们了解人工智能系统的学习原理,如何改进系统,也为我们提供了可以应用于真实环境的模型。

应用:模拟驾驶;工业设计;游戏开发;智慧城市

技术公司代表: Improbable, Unity 3D, Microsoft (Minecraft), Google DeepMind/Blizzard, OpenAI, Comma.ai, Unreal Engine, Amazon Lumberyard

主要研究人员: Andrea Vedaldi (Oxford)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246863.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2016 亚洲共识指南:肺结节的评估

2016 年 2 月,亚洲肺部疾病和胸外科多学科专家小组在美国胸科医师学会(ACCP)制定的肺结节评估指南的基础上结合亚洲患者的自身特点制订了亚洲肺结节患者的评估指南。 亚洲肺结节的评估与 APCC 指南中所指出的重要注意事项大致相同。但该指南…

Ubuntu 15.04 安装TensorFlow(源码编译) 及测试梵高作画

介绍Google的TensorFlow机器学习开源库,在UbuntuKylin上的安装和和源码编译。 原始官方文档参见:http://www.tensorflow.org. 本电脑配置如下: 3.19.0-15-generic #15-Ubuntu x86_64 GNU/Linux NVIDIA Corporation GK110BGL [Tesla K40c] …

Ubuntu 15.04 安装 boost-python

1. 安装依赖库 sudo apt-get install python-dev sudo apt-get install mpi-default-dev #安装mpi库 sudo apt-get install libicu-dev #支持正则表达式的UNICODE字符集 sudo apt-get install …

python 常见问题汇总(待续)

1. No module named skimage pip install scikit-image --upgrade 2. No module named dicom sudo pip install pydicom 3. python name ‘os’ is not defined import os This will import the python’s module os, which apparently is used later in the code of your m…

如何将 ipynb 发布到 blog 中(html, markdown格式)

相关文章链接 如何向IPython Notebook中导入.py文件 如何将 ipynb 发布到 blog 中(html, markdown格式) Introducing IPython Notebook Beginner’s IPython Notebook Tutorial Example notebook showing how to do statistics in IPython Notebook next generation slide…

HP Z840 工作站配sSAS Raid 安装 Ubuntu 16.04 系统

惠普Z840工作站配SAS RAID安装win7系统加载驱动 安装ubuntu的最低版本版本要求是01.25,请更新到官方最新的02.31测试 1. BIOS系统更新 1. 准备好一个空的U盘,格式化成FAT32,在U盘上建立\Hewlett-Packard\BIOS\New 2. 下载链接http://ftp.hp…

Ubuntu SSH Algorithm negotiation failed

问题 解决方法 chmod 777 /etc/ssh/sshd_configgedit /etc/ssh/sshd_config添加如下 Ciphers aes128-cbc,aes192-cbc,aes256-cbc,aes128-ctr,aes192-ctr,aes256-ctr,3des-cbc,arcfour128,arcfour256,arcfour,blowfish-cbc,cast128-cbcMACs hmac-md5,hmac-sha1,umac-64openssh.…

不同matlab版本所支持的gcc g+版本

问题 关于 GCC 和 G 版本问题 Matlab 2014a gcc/g 4.7.x, Matlab 2016a gcc/g 4.9.x Matlab 2017a gcc/g 4.9.x Ubuntu 15.04 gcc/g 4.9.x, Ubuntu 16.04 gcc/g 5.4.x 原则上Matlab需要和Ubuntu版本一致,由于CUDA 8只支持16.04,而且需要GCC 5.4.x 进行编译&#…

Linux系统中添加硬盘,并挂载到已有的目录,比如/home/user

备份用户下数据 cd home ls newuser tar cvf newuser.tar newuser  #创建一个tar归档 rm -rf newuser mkdir newuser备注:newuser为home下的用户。 分区和挂载 #查看硬盘分区 fdisk -l#分区 fdisk /dev/sdbCommand (m for help):m#新建一个分区 Comman…

高性能Numpy/Scipy加速:使用Intel MKL和Intel Compilers或OpenBLAS(待续)

Numpy/Scipy加速:使用Intel MKL和Intel Compilers 1.获取Intel Parallel Studio XE Intel免费软件工具提供免费的软件包,其中包括完整的Intel编译器和计算库及其激活码,软件和激活码一一对应。注意需要使用教育邮箱注册,否则不予通过。 2.安装…

Linux 安装卸载软件及管理软件仓库

软件仓库 Linux的软件包都存放在一个地方,叫做软件仓库,repository。 因为Linux是在Windows之后诞生的(1991年前后),所以为了避免Windows的这个“弊端”,Linux选择创建一个集中存放软件的地方。 当然了&a…

Linux 终端配置

一般Linux中的配置文件大多以点开头,而且多以rc结尾。比如vim的配置文件 .vimrc,bash shell的配置文件.bashrc,等等。 像这样的配置文件,如果用ls -l命令是列不出来的,需要用ls -a来列出。 “rc”,它是“…

Caffe2 Compilation Error gflags.cc' is being linked both statically and dynamically into this execut

问题描述 python -c from caffe2.python import core 2>/dev/null && echo "Success" || echo "Failure" 出现这个问题 ERROR: something wrong with flag flagfile in file /home/bids/softwares/gflags-2.2.0/src/gflags.cc. One possibil…

值得关注的医疗 AI 公司(待续)

医疗成像 Clearview Diagnostics 是一家开发辅助医生诊断疾病的工具的 AI 软件公司。该公司最初的重点是乳腺癌。 Butterfly Network 是一家医疗成像技术公司,该公司创建了一个集成了深度学习技术的便携式医疗成像设备,帮助缺乏医疗机构或医生不够专业的…

caffe2 介绍

Caffe2的特性 Caffe2框架可以通过一台机器上的多个GPU或具有一个及多个GPU的多台机器来进行分布式训练。 也可以在iOS系统、Android系统和树莓派(Raspberry Pi)上训练和部署模型。只需要运行几行代码即可调用Caffe2中预先训练好的Model Zoo模型。Caffe2…

如何向IPython Notebook中导入.py文件

相关文章链接 如何向IPython Notebook中导入.py文件 如何将 ipynb 发布到 blog 中(html, markdown格式) Introducing IPython Notebook Beginner’s IPython Notebook Tutorial Example notebook showing how to do statistics in IPython Notebook next generation sli…

Python 中的numpy 库

待总结 用scikit-learn和pandas学习线性回归 用scikit-learn和pandas学习Ridge回归 待整理的 Numpy & Pandas numpy——主要对其 N 维数组对象有用 http://www.numpy.org/ Pandas数据转为 numpy数据 df_numpyMatrix df.as_matrix() df_numpyMatrixdf.values a([3.23…

Python 中的Pandas库

待总结 用scikit-learn和pandas学习线性回归 用scikit-learn和pandas学习Ridge回归 基于python的数据分析库Pandas pandas——Python 数据分析库,包括数据框架(dataframes)等结构 http://pandas.pydata.org/ 10 Minutes to Pandas&#…

weka和matlab完成完整分类实验

本文 本文简单介绍数据集介绍、weka的使用、weka与LIBSVM、matlab与LIBSVM以及分类的若干细节问题。 1. 数据集介绍 打开网址UCI数据集,如下图。 从右下角可以看到Iris这个数据集,这是使用最多的数据集,目前下载量超过了82万。 打开之后跳…

Python 中的绘图matplotlib mayavi库

python matplotlib 图像可视化 python-data-visualization-course Interactive Web Plotting for Python Interactive Web Plotting for Python-github 待整理的 Matplotlib Introduction to Matplotlib and basic line matplotlib——一个 2D 绘图库,可产生…