ubuntu 16.04 配置Python2.7 和 Python3.5 同时调用OpenCV


安装OpenCV


OpenCV 官网,下载见 SourceForge and GitHub。

若使用官网版本安装不成功,则可试试Github版本。
或者

git clone https://github.com/Itseez/opencv.git

安装依赖库

sudo apt-get -y install libopencv-dev
sudo apt-get -y install build-essential
sudo apt-get -y install checkinstall
sudo apt-get -y install cmake
sudo apt-get -y install pkg-config
sudo apt-get -y install yasm
sudo apt-get -y install libtiff5-dev
sudo apt-get -y install libjpeg-dev
sudo apt-get -y install libjasper-dev
sudo apt-get -y install libavcodec-dev
sudo apt-get -y install libavformat-dev
sudo apt-get -y install libswscale-dev
sudo apt-get -y install libdc1394-22-dev
sudo apt-get -y install libxine2-dev
sudo apt-get -y install libgstreamer0.10-dev
sudo apt-get -y install libgstreamer-plugins-base0.10-dev
sudo apt-get -y install libv4l-dev
sudo apt-get -y install python-dev
sudo apt-get -y install python-numpy
sudo apt-get -y install libtbb-dev
sudo apt-get -y install libqt4-dev
sudo apt-get -y install libgtk2.0-dev
sudo apt-get -y install libfaac-dev
sudo apt-get -y install libmp3lame-dev
sudo apt-get -y install libopencore-amrnb-dev
sudo apt-get -y install libopencore-amrwb-dev
sudo apt-get -y install libtheora-dev
sudo apt-get -y install libvorbis-dev
sudo apt-get -y install libxvidcore-dev
sudo apt-get -y install x264
sudo apt-get -y install v4l-utils
sudo apt-get -y install ffmpeg
sudo apt-get -y install unzip

OpenCV下载

wget https://codeload.github.com/opencv/opencv/zip/3.2.0
unzip 3.2.0 && cd opencv-3.2.0
mkdir build
cd build 

或者 推荐下面的下载方法

git clone https://github.com/Itseez/opencv.git
cd opencv

编译安装

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON -D WITH_OPENGL=ON ..
make -j4
sudo make install

或者

~/build$ cmake ~/opencv -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON -D WITH_OPENGL=ON ../opencv

测试

python
import cv2

配置Python3.5 调用OpenCV


以上OpenCV的python解释器版本是2.7, Python3.5想调用OpenCV,如何配置呢

安装依赖库

sudo apt-get update
sudo apt-get install build-essential cmake pkg-config
sudo apt-get install libjpeg8-dev libtiff5-dev libjasper-dev libpng12-dev
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo apt-get install libxvidcore-dev libx264-dev
sudo apt-get install libgtk-3-dev
sudo apt-get install libatlas-base-dev gfortran
sudo apt-get install python3-setuptools python3-dev sudo easy_install3 pip
pip3 install numpy
sudo apt-get install cmake git libgtk2.0-dev  

特别注意

sudo apt install python3-dev libpython3.5-dev python3-numpy

1. 进入opencv-3.2.0/build/路径下,执行ccmake

sudo ccmake .

2. 添加python3路径
向下翻页,找到python3,手动添加自己的python3路径
这里写图片描述

具体添加细节如下

CMAKE_BUILD_TYPE=Release 
CMAKE_INSTALL_PREFIX=/usr/local  
PYTHON3_EXECUTABLE=/usr/bin/python3 
PYTHON3_INCLUDE_DIR=/usr/include/python3.5 
PYTHON3_LIBRARY=/usr/lib/x86_64-linux-gnu/libpython3.5m.so
PYTHON3_NUMPY_INCLUDE_DIRS=/usr/local/lib/python3.5/dist-packages/numpy/core/include

命令行配置方法

cmake -D CMAKE_BUILD_TYPE=RELEASE \-D CMAKE_INSTALL_PREFIX=/usr/local \
 -D PYTHON3_EXECUTABLE=/usr/bin/python3 \
 -D PYTHON3_INCLUDE_DIR=/usr/include/python3.5 \
 -D PYTHON3_LIBRARY=/usr/lib/x86_64-linux-gnu/libpython3.5m.so \
 -D PYTHON3_NUMPY_INCLUDE_DIRS=/usr/local/lib/python3.5/dist-packages/numpy/core/include ..

3. 生成make文件

按c键配置。如果有错,例如找不到xx库,自行调整对应选项或者安装对应库。配置成功后,按g键生成makefile。

4. make一下

make一下。多核处理器优势很大,几分钟就make好了。

sudo make -j12  # 根据你自己电脑核心数
sudo make install 

5. 验证

python3
import cv2

6.查询OpenCV版本

pkg-config --modversion opencv  

或者

python
import cv2
cv2.__version__

参考文献


ImportError: No module named ‘cv2’ in Ubuntu 16.04 for Python3 in OpenCV3

Install OpenCV 3.0 and Python 3.4+ on Ubuntu

Linux-ubuntu16.04 Python3.5配置OpenCV3.2

Caffe + Ubuntu 15.04 + CUDA 7.5 在服务器上安装配置及卸载重新安装(已测试可执行)

基于ubuntu16.04配置opencv3.1+python3.5

ubuntu 16.04 安装 opencv3.2.0 with python 3.5

ubuntu14/16安装python3-opencv3

Ubuntu 16.04: How to install OpenCV

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246840.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

生成特定分布随机数的方法:Python seed() 函数numpy scikit-learn随机数据生成

描述 seed() 方法改变随机数生成器的种子,可以在调用其他随机模块函数之前调用此函数。。 语法 以下是 seed() 方法的语法: import random random.seed ( [x] ) 注意:seed(()是不能直接访问的,需要导入 random 模块,然后通过 ra…

scipy.ndimage.zoom上采样与下采样

插值 Bilinear interpolation would be order1, nearest is order0, and cubic is the default (order3). 举例说明 import numpy as np import scipy.ndimagex np.arange(64).reshape(8,8)print Original array: print xprint Resampled by a factor of 2 with nearest i…

UFLDL教程: Exercise: Sparse Autoencoder

自编码可以跟PCA 一样,给特征属性降维 一些matlab函数 bsxfun:Cbsxfun(fun,A,B)表达的是两个数组A和B间元素的二值操作,fun是函数句柄或者m文件,或者是内嵌的函数。在实际使用过程中fun有很多选择比如说加,减等,前面需…

UFLDL教程:Exercise:PCA in 2D PCA and Whitening

相关文章 PCA的原理及MATLAB实现 UFLDL教程:Exercise:PCA in 2D & PCA and Whitening python-A comparison of various Robust PCA implementations Deep Learning and Unsupervised Feature Learning Tutorial Solutions 统计学的基本概念 统计学里最基本…

UFLDL教程:Exercise:Softmax Regression

Softmax分类函数的Python实现 Deep Learning and Unsupervised Feature Learning Tutorial Solutions 逻辑回归假设函数 在线性回归问题中,假设函数具有如下形式: 在 logistic 回归中,我们的训练集由m 个已标记的样本构成:&#…

UFLDL教程: Exercise:Self-Taught Learning

自我学习 Deep Learning and Unsupervised Feature Learning Tutorial Solutions 1.先训练稀疏自编码器提取特征,再把特征和label给softmax分类器进行训练,最后用test数据集进行测试。 2.由于实际应用中找到大量有标注的样本是非常困难的,所…

UFLDL教程: Exercise: Implement deep networks for digit classification

Deep networks Deep Learning and Unsupervised Feature Learning Tutorial Solutions 深度网络的优势 比单层神经网络能学习到更复杂的表达。不同层的网络学习到的特征是由最底层到最高层慢慢上升的。比如在图像的学习中,第一个隐含层网络可能学习的是边缘特征&am…

UFLDL教程: Exercise:Learning color features with Sparse Autoencoders

Linear Decoders Deep Learning and Unsupervised Feature Learning Tutorial Solutions 以三层的稀疏编码神经网络而言,在sparse autoencoder中的输出层满足下面的公式 从公式中可以看出,a3的输出值是f函数的输出,而在普通的sparse autoenc…

UFLDL教程:Exercise:Convolution and Pooling

Deep Learning and Unsupervised Feature Learning Tutorial Solutions CNN的基本结构包括两层 其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确…

莫凡机器学习课程笔记

怎样区分好用的特征 避免无意义的信息避免重复性的信息避免复杂的信息 激活函数的选择 浅层神经网络,可以随便尝试各种激活函数 深层神经网络,不可随机选择各种激活函数,这涉及到梯度爆炸和梯度消失。(给出梯度爆炸和梯度消失的…

UFLDL教程:数据预处理

数据预处理是深度学习中非常重要的一步!如果说原始数据的获得,是深度学习中最重要的一步,那么获得原始数据之后对它的预处理更是重要的一部分。 一般来说,算法的好坏一定程度上和数据是否归一化,是否白化有关。 数据归…

深度学习笔记(待续)

背景知识 好的特征应具有不变性(大小、尺度和旋转等)和可区分性):例如Sift的出现,是局部图像特征描述子研究领域一项里程碑式的工作。由于SIFT对尺度、旋转以及一定视角和光照变化等图像变化都具有不变性,并…

人工智能泰斗迈克尔·乔丹分享机器学习要义:创新视角,直面挑战

2017年6月21日至22日,腾讯云未来峰会在深圳举行。人工智能领域的世界级泰斗迈克尔欧文乔丹(Michael I.Jordan)进行了主题为“机器学习:创新视角,直面挑战”的演讲,与大家分享他对人工智能的未来与挑战的见解…

Tensorflow官方文档---起步 MNIST示例

Tensorflow •使用图 (graph) 来表示计算任务. • 在被称之为 会话 (Session) 的上下文 (context) 中执行图. • 使用 tensor 表示数据. • 通过 变量 (Variable) 维护状态. • 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据 综述 Ten…

Git 版本管理

相关文章 版本管理 github访问太慢解决方案 Material for git workshop GitHub秘籍 安装-Git版本管理 Git官网安装说明 Linux 系统安装 # 如果你的 Linux 是 Ubuntu: $ sudo apt-get install git-all# 如果你的 Linux 是 Fedora: $ sudo yum install git-all 如果是其他…

tensorflow:Multiple GPUs

深度学习theano/tensorflow多显卡多人使用问题集 tensorflow中使用指定的GPU及GPU显存 Using GPUs petewarden/tensorflow_makefile tf_gpu_manager/manager.py 多GPU运行Deep Learning 和 并行Deep Learning(待续) Multiple GPUs 1. 终端执行程序…

Tensorflow一些常用基本概念与函数

参考文献 Tensorflow一些常用基本概念与函数 http://www.cnblogs.com/wuzhitj/archive/2017/03.html Tensorflow笔记:常用函数说明: http://blog.csdn.net/u014595019/article/details/52805444 Tensorflow一些常用基本概念与函数(1&#…

ubuntu16.04 Nvidia 显卡的风扇调速及startx的后果

问题描述 #查看nvdia GPU 显卡状态 watch -n 10 nvidia-smi 发现显卡Tesla k40c的温度已经达到74,转速仅仅只有49%。 查看Tesla产品资料,Tesla K40 工作站加速卡规格 ,可知 所以需要调整风扇速度来降温。 然而官方驱动面板里也没有了风扇调…

Python函数式编程-map()、zip()、filter()、reduce()、lambda()

三个函数比较类似,都是应用于序列的内置函数。常见的序列包括list、tuple、str map函数 map函数会根据提供的函数对指定序列做映射。 map函数的定义: map(function, sequence[, sequence, ...]) -> list map()函数接收两个参数,一个是函…

Kaggle : Using a Convolutional Neural Network for classifying Cats vs Dogs

数据下载 https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/data Part 1 - Preprocessing #Package Requirements #!/usr/bin/python2 # -*- coding: UTF-8 -*- import cv2 # working with, mainly resizing, images import numpy as np …