python中的glob 模块学习文件路径查找


glob


glob.glob(pathname), 返回所有匹配的文件路径列表。它只有一个参数pathname,定义了文件路径匹配规则,这里可以是绝对路径,也可以是相对路径。

import glob
glob.glob(r'c:/*.txt')
这里就是获得C盘下的所有txt文件glob.glob(r'E:/pic/*/*.jpg')
获得指定目录下的所有jpg文件使用相对路径:
glob.glob(r'../*.py')

glob.iglob(pathname), 获取一个可编历对象,使用它可以逐个获取匹配的文件路径名。与glob.glob()的区别是:glob.glob同时获取所有的匹配路径,而glob.iglob一次只获取一个匹配路径。


iglob


import glob
#父目录中的.py文件
f = glob.iglob(r'../*.py') 
print f #<generator object iglob at 0x00B9FF80>for py in f:print py

参考文献


python中的一个好用的文件名操作模块glob

python模块学习—glob 文件路径查找

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246836.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python os模块 常用命令

os 模块用法示例 python编程时&#xff0c;经常和文件、目录打交道&#xff0c;这是就离不了os模块。os模块包含普遍的操作系统功能&#xff0c;与具体的平台无关。以下列举常用的命令 1. os.name()——判断现在正在实用的平台&#xff0c;Windows 返回 ‘nt; Linux 返回’pos…

pandas.DataFrame.iterrows

iterrows DataFrame.iterrows()[source] Iterate over DataFrame rows as (index, Series) pairs. 迭代(iterate)覆盖整个DataFrame的行中&#xff0c;返回(index, Series)对>>> df pd.DataFrame([[1, 1.5]], columns[int, float]) >>> row next(df.iterr…

scipy.ndimage.zoom上采样与下采样

插值 Bilinear interpolation would be order1, nearest is order0, and cubic is the default (order3). 举例说明 import numpy as np import scipy.ndimagex np.arange(64).reshape(8,8)print Original array: print xprint Resampled by a factor of 2 with nearest i…

Python 进度条 tqdm

用法 tqdm&#xff08;读音&#xff1a;taqadum, تقدّم&#xff09;在阿拉伯语中的意思是进展。tqdm可以在长循环中添加一个进度提示信息&#xff0c;用户只需要封装任意的迭代器 tqdm(iterator)&#xff0c;是一个快速、扩展性强的进度条工具库。 from tqdm import tqdm…

sublime-text-3设置输入中文方法

以下方法在 ubutun16.04 中亲测可行&#xff0c;subl版本为 3126 。 一.下载源文件 源文件github链接地址为 https://github.com/jfcherng/my_scripts 或见CSDN下载。 二.安装fcitx输入法 打开终端&#xff0c;输入命令 sudo apt-get install -y fcitx fcitx-im 安装 fcitx…

你真的懂TensorFlow吗?Tensor是神马?为什么还会Flow?

本文的ipynb 格式见CSDN下载。 0维张量/标量 标量是一个数字 1维张量/向量 1维张量称为“向量”。 2维张量 2维张量称为矩阵 3维张量 公用数据存储在张量 时间序列数据 股价 文本数据 图片 彩色图片 5D张量 结论 实际上&#xff0c;你可以使用一个数字的张量&…

标签传播算法(Label Propagation)及Python实现

半监督学习&#xff08;Semi-supervised learning&#xff09;发挥作用的场合是&#xff1a;你的数据有一些有label&#xff0c;一些没有。而且一般是绝大部分都没有&#xff0c;只有少许几个有label。半监督学习算法会充分的利用unlabeled数据来捕捉我们整个数据的潜在分布。它…

UFLDL教程: Exercise: Sparse Autoencoder

自编码可以跟PCA 一样&#xff0c;给特征属性降维 一些matlab函数 bsxfun:Cbsxfun(fun,A,B)表达的是两个数组A和B间元素的二值操作&#xff0c;fun是函数句柄或者m文件&#xff0c;或者是内嵌的函数。在实际使用过程中fun有很多选择比如说加&#xff0c;减等&#xff0c;前面需…

概率图模型: Coursera课程资源分享和简介

本博客中概率图模型&#xff08;Probabilistic Graphical Model&#xff09;系列笔记以 Stanford 教授 Daphne Koller 的公开课 Probabilistic Graphical Model 为主线&#xff0c;结合资料&#xff08;每篇博文脚注都附有链接&#xff09;加以补充. 为便于对照课程查阅&#x…

UFLDL教程:Exercise:Vectorization

载入数据并显示 Deep Learning and Unsupervised Feature Learning Tutorial Solutions 下载MINIST数据集及加载数据集的函数。MINIST数据集的介绍。 % Change the filenames if youve saved the files under different names % On some platforms, the files might be saved…

UFLDL教程:Exercise:PCA in 2D PCA and Whitening

相关文章 PCA的原理及MATLAB实现 UFLDL教程&#xff1a;Exercise:PCA in 2D & PCA and Whitening python-A comparison of various Robust PCA implementations Deep Learning and Unsupervised Feature Learning Tutorial Solutions 统计学的基本概念 统计学里最基本…

UFLDL教程:Exercise:Softmax Regression

Softmax分类函数的Python实现 Deep Learning and Unsupervised Feature Learning Tutorial Solutions 逻辑回归假设函数 在线性回归问题中&#xff0c;假设函数具有如下形式&#xff1a; 在 logistic 回归中&#xff0c;我们的训练集由m 个已标记的样本构成&#xff1a;&#…

UFLDL教程: Exercise:Self-Taught Learning

自我学习 Deep Learning and Unsupervised Feature Learning Tutorial Solutions 1.先训练稀疏自编码器提取特征&#xff0c;再把特征和label给softmax分类器进行训练&#xff0c;最后用test数据集进行测试。 2.由于实际应用中找到大量有标注的样本是非常困难的&#xff0c;所…

UFLDL教程: Exercise: Implement deep networks for digit classification

Deep networks Deep Learning and Unsupervised Feature Learning Tutorial Solutions 深度网络的优势 比单层神经网络能学习到更复杂的表达。不同层的网络学习到的特征是由最底层到最高层慢慢上升的。比如在图像的学习中&#xff0c;第一个隐含层网络可能学习的是边缘特征&am…

UFLDL教程: Exercise:Learning color features with Sparse Autoencoders

Linear Decoders Deep Learning and Unsupervised Feature Learning Tutorial Solutions 以三层的稀疏编码神经网络而言&#xff0c;在sparse autoencoder中的输出层满足下面的公式 从公式中可以看出&#xff0c;a3的输出值是f函数的输出&#xff0c;而在普通的sparse autoenc…

UFLDL教程:Exercise:Convolution and Pooling

Deep Learning and Unsupervised Feature Learning Tutorial Solutions CNN的基本结构包括两层 其一为特征提取层&#xff0c;每个神经元的输入与前一层的局部接受域相连&#xff0c;并提取该局部的特征。一旦该局部特征被提取后&#xff0c;它与其它特征间的位置关系也随之确…

莫凡机器学习课程笔记

怎样区分好用的特征 避免无意义的信息避免重复性的信息避免复杂的信息 激活函数的选择 浅层神经网络&#xff0c;可以随便尝试各种激活函数 深层神经网络&#xff0c;不可随机选择各种激活函数&#xff0c;这涉及到梯度爆炸和梯度消失。&#xff08;给出梯度爆炸和梯度消失的…

UFLDL教程:数据预处理

数据预处理是深度学习中非常重要的一步&#xff01;如果说原始数据的获得&#xff0c;是深度学习中最重要的一步&#xff0c;那么获得原始数据之后对它的预处理更是重要的一部分。 一般来说&#xff0c;算法的好坏一定程度上和数据是否归一化&#xff0c;是否白化有关。 数据归…

How To Install Visual Studio Code On Ubuntu

链接 Linux中安装 Visual Studio Code 详解 在Ubuntu中安装Visual Studio Code How To Install Visual Studio Code On Ubuntu

深度学习笔记(待续)

背景知识 好的特征应具有不变性&#xff08;大小、尺度和旋转等&#xff09;和可区分性&#xff09;&#xff1a;例如Sift的出现&#xff0c;是局部图像特征描述子研究领域一项里程碑式的工作。由于SIFT对尺度、旋转以及一定视角和光照变化等图像变化都具有不变性&#xff0c;并…