Learning from Imbalanced Classes


数据不均衡


数据不平衡是一个非常经典的问题,数据挖掘、计算广告、NLP等工作经常遇到。该文总结了可能有效的方法,值得参考:

    1.Do nothing. Sometimes you get lucky and nothing needs to be done. You can train on the so-called natural (or stratified) distribution and sometimes it works without need for modification.2. Balance the training set in some way:2.1 Oversample the minority class.2.2 Undersample the majority class.2.3 Synthesize new minority classes.3. Throw away minority examples and switch to an anomaly detection framework.4. At the algorithm level, or after it:4.1 Adjust the class weight (misclassification costs).4.2 Adjust the decision threshold.4.3  Modify an existing algorithm to be more sensitive to rare classes.5.  Construct an entirely new algorithm to perform well on imbalanced data.

参考文献

https://svds.com/learning-imbalanced-classes/

Learning from Imbalanced Classes

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246812.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tensorflow官方文档---起步 MNIST示例

Tensorflow •使用图 (graph) 来表示计算任务. • 在被称之为 会话 (Session) 的上下文 (context) 中执行图. • 使用 tensor 表示数据. • 通过 变量 (Variable) 维护状态. • 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据 综述 Ten…

Git 版本管理

相关文章 版本管理 github访问太慢解决方案 Material for git workshop GitHub秘籍 安装-Git版本管理 Git官网安装说明 Linux 系统安装 # 如果你的 Linux 是 Ubuntu: $ sudo apt-get install git-all# 如果你的 Linux 是 Fedora: $ sudo yum install git-all 如果是其他…

tensorflow:Multiple GPUs

深度学习theano/tensorflow多显卡多人使用问题集 tensorflow中使用指定的GPU及GPU显存 Using GPUs petewarden/tensorflow_makefile tf_gpu_manager/manager.py 多GPU运行Deep Learning 和 并行Deep Learning(待续) Multiple GPUs 1. 终端执行程序…

Tensorflow一些常用基本概念与函数

参考文献 Tensorflow一些常用基本概念与函数 http://www.cnblogs.com/wuzhitj/archive/2017/03.html Tensorflow笔记:常用函数说明: http://blog.csdn.net/u014595019/article/details/52805444 Tensorflow一些常用基本概念与函数(1&#…

ubuntu16.04 Nvidia 显卡的风扇调速及startx的后果

问题描述 #查看nvdia GPU 显卡状态 watch -n 10 nvidia-smi 发现显卡Tesla k40c的温度已经达到74,转速仅仅只有49%。 查看Tesla产品资料,Tesla K40 工作站加速卡规格 ,可知 所以需要调整风扇速度来降温。 然而官方驱动面板里也没有了风扇调…

Python函数式编程-map()、zip()、filter()、reduce()、lambda()

三个函数比较类似,都是应用于序列的内置函数。常见的序列包括list、tuple、str map函数 map函数会根据提供的函数对指定序列做映射。 map函数的定义: map(function, sequence[, sequence, ...]) -> list map()函数接收两个参数,一个是函…

Python函数之 ceil, floor,round

Ceiling是向上取整 floor是向下取整 Round是四舍五入的 ceil 描述 ceil() 函数返回数字的上入整数 ceil():将小数部分一律向整数部分进位。 #!/usr/bin/python import math # This will import math moduleprint "math.ceil(-45.17) : ", math.cei…

Python如何将列表分成均匀大小的块?

均匀大小的块 def chunks(l, n):"""Yield successive n-sized chunks from l."""for i in range(0, len(l), n):yield l[i:i n] import pprint pprint.pprint(list(chunks(range(10, 75), 10))) [[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],[2…

Kaggle : Using a Convolutional Neural Network for classifying Cats vs Dogs

数据下载 https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/data Part 1 - Preprocessing #Package Requirements #!/usr/bin/python2 # -*- coding: UTF-8 -*- import cv2 # working with, mainly resizing, images import numpy as np …

李宏毅机器学习课程1~~~Introduction Regression

机器学习介绍 机器学习就是要找一个函数。 机器学习的三大要素框架:训练集,函数集(模型集),损失函数集。 机器学习图谱 AI训练师的成长之路。 1. 梯度下降法的理解Gradient Descent 参数变化的方向就是损失函数减少的方…

李宏毅机器学习课程2~~~误差从哪里来?

Stanford机器学习—第六讲. 怎样选择机器学习方法、系统 误差来源 误差主要来自于偏差和方差。 数学上定义: 通过covariate X 预测 Y ,我们假设存在如下关系: Y f(X) ϵ 满足正态分布均值为0 方差σϵ 模型预测错误定义为: …

李宏毅机器学习课程3~~~梯度下降法

梯度下降法描述 梯度下降法是为了找到最优的目标函数,寻找的过程就是沿着损失函数下降的方向来确定参数变化的方向。参数更新的过程就是一个不断迭代的过程,每次更新参数学到的函数都会使得误差损失越来越小,也就是说学习到的参数函数越来越逼…

python解析json

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,易于人阅读和编写。 引用模块 import json 重要函数 编码:把一个Python对象编码转换成Json字符串 json.dumps() 解码:把Json格式字符串解码转换成Python对象 json.loads() 排序…

李宏毅机器学习课程4~~~分类:概率生成模型

分类问题用回归来解决? 当有右图所示的点时,这些点会大幅改变分类线的位置。这时候就会导致整体的回归结果变差。当把多分类当成回归问题,类别分别为1,2,3,4……,因为回归的问题是预测具体的值,这样定义类别…

李宏毅机器学习课程5~~~分类:逻辑回归

Function Set 不同的w,b来确定不同的函数,这样就组成了函数集合,不同的w,b可以来表达不同的分布函数。 Good of a Function 变换表达形式 两个Bernoulli distribution的交叉熵。所谓交叉熵,是用来刻画两个分布的相似性…

李宏毅机器学习课程6~~~深度学习入门

深度学习历史 深度学习经典步骤 神经网络的符合标记含义 Wij 代表的是从神经元j到神经元i,这样写的目的是便于表达,否则最后的表达式子就是Wij的转置,细节见下面。 每个神经元的偏执值组成一个向量b 单个神…

李宏毅机器学习课程7~~~反向传播

到底为什么基于反向传播的纯监督学习在过去表现不佳?Geoffrey Hinton总结了目前发现的四个方面问题: 带标签的数据集很小,只有现在的千分之一. 计算性能很慢,只有现在的百万分之一. 权重的初始化方式笨拙. 使用了错误的非线性模型…

李宏毅机器学习课程8~~~keras

keras keras示例 确定网络结构 确定损失函数 确定训练网络参数 batchsize与运算时间,平行运算,可以缩简运算时间。batchsize不能太大,这是由于内存的关系。此外,batchsize太大容易陷入局部极值点或者鞍点。batchsize=&…

李宏毅机器学习课程9~~~深度学习技巧

Recipe of Deep Learning Overfitting overfitting的判断是要训练误差与测试误差做比较。这个56-layer的网络在训练集上都没有训练好,说白了就是有点欠拟合。所以仅仅依靠测试集上的结果来判断56-layer比20-layer overfitting是不合理的。 更多理解见 Overfitting…

Liner(分段线性插值)

第一次写微博,记录自己的学习历程~~~~欢迎大家一起探讨~~~~ 分段线性插值故名思议就是说把给定样本点的区间分成多个不同区间,记为[xi,xi1],在每个区间上的一次线性方程为: 关于其证明: 分段线性插值在速度和误差取得…