Tensorflow中padding的两种类型SAME和VALID

边界补充问题

原始图片尺寸为7*7,卷积核的大小为3*3,当卷积核沿着图片滑动后只能滑动出一个5*5的图片出来,这就造成了卷积后的图片和卷积前的图片尺寸不一致,这显然不是我们想要的结果,所以为了避免这种情况,需要先对原始图片做边界填充处理。在上面的情况中,我们需要先把原始图像填充为9*9的尺寸。
常用的区域填充方法包括:
用3*3定义原始图像的尺寸,补充为9*9的尺寸,图片上的颜色只为方便观看,并没有任何其他含义。
原始图像:

这里写图片描述

(1)补零
这里写图片描述
(2)边界复制
这里写图片描述
(3)镜像
这里写图片描述
(4)块复制
这里写图片描述

更多理解见
理解图像卷积操作的意义

卷积操作有两个问题:
1. 图像越来越小;
2. 图像边界信息丢失,即有些图像角落和边界的信息发挥作用较少。因此需要padding。

卷积核大小通常为奇数
一方面是为了方便same卷积padding对称填充,左右两边对称补零;
n+2p-f+1=n
p=(f-1)/2
另一方面,奇数过滤器有中心像素,便于确定过滤器的位置。

padding


padding的方式:


这里写图片描述

备注

"VALID" only ever drops the right-most columns (or bottom-most rows)."SAME" tries to pad evenly left and right, but if the amount of columns to be added is odd, it will add the extra column to the right, as is the case in this example (the same logic applies vertically: there may be an extra row of zeros at the bottom).
不同的padding方式,VALID是采用丢弃的方式,比如上述的input_width=13,只允许滑动2次,多余的元素全部丢掉
SAME的方式,采用的是补全的方式,对于上述的情况,允许滑动3次,但是需要补3个元素,左奇右偶,在左边补一个0,右边补2个0

Tensorflow中的定义


 The TensorFlow Convolution example gives an overview about the difference between SAME and VALID :For the SAME padding, the output height and width are computed as:out_height = ceil(float(in_height) / float(strides[1]))out_width = ceil(float(in_width) / float(strides[2]))AndFor the VALID padding, the output height and width are computed as:out_height = ceil(float(in_height - filter_height + 1) / float(strides1))out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))

备注

#SAME 向上取整
#VALID 向下取整
输入:n*c0*w0*h0
输出:n*c1*w1*h1
其中,c1就是参数中的num_output,生成的特征图个数w1=floor((w0+2*pad-kernel_size)/stride)+1;向下取整h1=floor((h0+2*pad-kernel_size)/stride)+1;向下取整
如果设置stride为1,前后两次卷积部分存在重叠。如果设置pad=(kernel_size-1)/2,则运算后,宽度和高度不变。
由pad, kernel_size和stride三者共同决定。

更多细节可见卷积步长

x = tf.constant([[1., 2., 3.],[4., 5., 6.]])x = tf.reshape(x, [1, 2, 3, 1])  # give a shape accepted by tf.nn.max_poolvalid_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
same_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')valid_pad.get_shape() == [1, 1, 1, 1]  # valid_pad is [5.]
same_pad.get_shape() == [1, 1, 2, 1]   # same_pad is  [5., 6.]

参考文献:


TensorFlow中CNN的两种padding方式“SAME”和“VALID”

https://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in-tf-nn-max-pool-of-t

Tensorflow中padding的两种类型SAME和VALID

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246766.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习两种距离——欧式距离和马氏距离

我们熟悉的欧氏距离虽然很有用,但也有明显的缺点。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。例如,在教育研究中,经常遇到对人的分析和判别,个体的…

HMM前向算法,维比特算法,后向算法,前向后向算法代码

typedef struct { int N; /* 隐藏状态数目;Q{1,2,…,N} */ int M; /* 观察符号数目; V{1,2,…,M}*/ double **A; /* 状态转移矩阵A[1..N][1..N]. a[i][j] 是从t时刻状态i到t1时刻状态j的转移概率 */ double **B; /* 混淆矩阵B[1..N][1..M]. b[j][k]在状态j时观察到符合k的概率。…

Python的GUI框架PySide

PySide学习笔记 PySide安装 Python自带了GUI模块Tkinter,只是界面风格有些老旧。 Python的Qt有PyQt和PySide吧。PyQt 是商业及 GPL 的版权, 而 PySide 是 LGPL。大意也就是PyQt开发商业软件是要购买授权的,而PySide则不需要。二者代码基本一…

Python中的除法保留两位小数

在C/C语言对于整形数执行除法会进行地板除(舍去小数部分)。例如 int a15/10; a的结果为1。 同样的在Java中也是如此,所以两个int型的数据相除需要返回一个浮点型数据的时候就需要强制类型转换,例如 float a (float)b/c ,其中b、…

最小二乘法深入

上次写了一个一次函数yaxb类型的最小二乘法,即可以看做是n维输入列向量对应的一个n维输出列向量,然后对已知结果进行学习,得到拟合公式。这里对m*n的矩阵进行最小二乘法分析。 设模型的输出为和训练集输出,它们之间的平方误差为&…

github访问太慢解决方案

相关文章 版本管理 github访问太慢解决方案 Material for git workshop github 域名列表 先建立一个域名列表haha.txt,下面列表中的gist.github.com是代码片功能 github.com assets-cdn.github.com avatars0.githubusercontent.com avatars1.githubusercontent.…

ubuntu16.04 制作gif

byzanz安装 sudo apt-get install byzanz byzanz-record #录像byzanz-playback #回放 下载完成后打开命令行输入byzanz-record –help 其中我们重点关注几个参数 * -d 动画录制的时间,默认录制10秒 * -e 动画开始延迟 * -x 录制区域的起始X坐标 * -y 录制区域的起始Y坐标 …

典型关联分析CCA(canonical correlation analysis)

先看两个数学概念: 相关系数(参看百度百科) 相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度 相…

Kullback–Leibler divergence(相对熵,KL距离,KL散度)

1 前言 注意两个名词的区别: 相对熵:Kullback–Leibler divergence 交叉熵:cross entropy KL距离的几个用途: ① 衡量两个概率分布的差异。 ② 衡量利用概率分布Q 拟合概率分布P 时的能量损耗,也就是说拟合以后丢失…

李宏毅机器学习课程11~~~为何要深?

为何要“深”? pluskid的博客 Deep Learning and Shallow Learning Bengio Y. Learning deep architectures for AI. Foundations and trends in Machine Learning, 2009 Deeper is Better? 模型有更多的参数会有更好的结果,这是毋庸置疑的。 深瘦的模…

没事随便写写——matlab图像与矩阵的转换与存储为txt文件

<span style"font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);">刚开课&#xff0c;上了一节计算机图像处理&#xff0c;想了一下把图像转换成矩阵表示&#xff0c;然后存储到txt文档中去。图片用的 lena.jpg</span> …

李宏毅机器学习课程12~~~半监督学习

Semi-supervised Learning The distribution of the unlabeled data tell us something. Usually with some assumptions. Semi-Supervised Generative Model 对比学习见 李宏毅机器学习课程&#xff14;~~~分类&#xff1a;概率生成模型 EM算法思路来最大化似然函数。 Self-tr…

计算机视觉、机器学习相关领域论文和源代码大集合--持续更新……

原文地址&#xff1a;http://blog.csdn.net/whaoXYSH/article/details/16886109 一、特征提取Feature Extraction&#xff1a; SIFT [1] [Demo program][SIFT Library] [VLFeat] PCA-SIFT [2] [Project] Affine-SIFT [3] [Project] SURF […

Tensor数据相关的运算、函数讲解及与numpy区别

Tensor tensorflow 中使用它来表示数据。可以看做多维数组或者list。 标量是张量&#xff0c;向量是张量&#xff0c;矩阵是张量&#xff0c;矩阵的矩阵是张量。 常用几种定义方法 1. variable变量&#xff0c;一般是可以被更更新或更改的数值&#xff0c;即在流图运行过程中…

Python程序设计—车万翔

程序设计入门—Python 对象和类型 五种基本对象类型 字符串 &#xff08;string&#xff09;&#xff0c;简记为 str 使用 ’ ’ 或 ” ” 括起来的一系列字符 整数&#xff08;integer&#xff09;&#xff0c;简记为 int 十进制&#xff1a;21&#xff0c;八进制&#xf…

【重大修改】动态时间规整(Dynamic Time Warping)

本文只是简单的介绍DTW算法的目的和实现。具体的DTW可以参考一下文献&#xff1a; 离散序列的一致性度量方法&#xff1a;动态时间规整&#xff08;DTW&#xff09; http://blog.csdn.net/liyuefeilong/article/details/45748399 动态时间归整/规整/弯曲(Dynamic time warpi…

python中的深拷贝与浅拷贝

浅拷贝的时候&#xff0c;修改原来的对象&#xff0c;深拷贝的对象不会发生改变。 对象的赋值 对象的赋值实际上是对象之间的引用&#xff1a;当创建一个对象&#xff0c;然后将这个对象赋值给另外一个变量的时候&#xff0c;python并没有拷贝这个对象&#xff0c;而只是拷贝了…

从机器学习谈起

很好的一篇文章&#xff0c;转载自博客园&#xff1a;http://www.cnblogs.com/subconscious/p/4107357.html 在本篇文章中&#xff0c;我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习&#xff0c;并且上手相关的实践。这篇文档也算…

核函数

由于下一篇要学机器学习的另外一种模型——核模型&#xff0c;里面涉及到核函数&#xff0c;所以先找了一下核函数的相关知识。 在知乎上看到了一些比较好的解答&#xff0c;详细参考&#xff1a;http://www.zhihu.com/question/24627666 首先举一个核函数把低维空间映射到高…

关于Matlab编程的思考(待续)

Matlab编程的规范化思考 1.并行化 2.释放内存 3.需要调参的变量太多&#xff0c;可考虑将变量都放到一个结构体里面。 4.find(y),就是要找到y中那些非零项的指引 5.代码运行出现问题的时候&#xff0c;在命令行输入why就可以得到答案 6.输入bench可以给电脑跑分。 7.hom…