什么是NP完全问题?

本文转自:http://blog.csdn.net/xueyong4712816/article/details/6509592 

NP完全问题,是世界七大数学难题之一,排在百万美元大奖的首位,够诱惑力吧!咋不求得奖只需要了解了解它是什么就可以了。

   什么是NP完全问题,NP=Non-deterministic Polynomial,也就是多项式复杂程度的非确定性问题, 是不是看汉语翻译一下子给懵了。没事,我们慢慢来,要了解NP问题,我们先从P问题开始,P就是Polynomial(多项式)的意思。P类问题就是所有复杂度为多项式时间的问题的集合。时间复杂度了解吧,我不多讲;多项式就是n^k+n^(k-1)+……等等其中k为任意整数(一般不会很大)。这个数看起来很大,其实人类计算机相对都能接受。就怕遇到指数方增长的问题。

    接下来我们探讨非确定性问题。什么是非确定性问题呢?有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。再比如,大的合数分解质因数的问题,有没有一个公式,把合数代进去,就直接可以算出,它的因子各自是多少?也没有这样的公式。这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这也就是非确定性问题。而这些问题通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式时间内算出来,就叫做多项式非确定性问题。而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。

  完全多项式非确定性问题可以用穷举法得到答案,一个个检验下去,最终便能得到结果。但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。经典的NP问题有:梵塔问题,推销员旅行问题等。

    总之理解一句:NP完全问题就是 NP=P?的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246699.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【caffe-Windows】微软官方caffe之 matlab接口配置

前言 按照微软的官方地址配置可能会出现一个问题caffe_.mexw64找不到引用模块问题,或者在matlab里面压根找不到caffe_这个函数,下面会提到这两个问题。还是按照步骤来吧 【PS1】有GPU同样按照下述步骤,进行即可 【PS2】文章在matlab2013a、…

【混淆矩阵】matlab画混淆矩阵

主要借鉴此博客代码:http://blog.csdn.net/sherry_gp/article/details/50560003 但是这个博主的代码达不到我想要的效果,所以修改了一下 我想要实现的效果是:给定一列的预测标签,以及这一列标签的哪一部分理应属于哪一部分标签。…

【caffe-Windows】mnist实例编译之model的生成

其实这个和cifar的实例基本相同,只不过数据转换的方法不一样 【说明,此博客按照我自己的路径设置的相关操作,读者如果自行选择其他路径,记得在bat和prototxt等文件修改路径】 第一步 下载数据集THE MNIST DATABASE of handwrit…

吉布斯采样——原理及matlab实现

原文来自:https://victorfang.wordpress.com/2014/04/29/mcmc-the-gibbs-sampler-simple-example-w-matlab-code/ 【注】评论区有同学指出译文理论编码有误,请参考更官方的文献,个人当时仅验证过红色字体部分理论与维基百科中二位随机变量吉…

【matlab知识补充】conv2、filter2、imfilter函数原理

原文地址:http://www.ilovematlab.cn/thread-293710-1-1.html -------------------------------------conv2函数---------------------------------------- 1、用法 Cconv2(A,B,shape); %卷积滤波 复制代码A:输入图像,B:卷积核假设输入图像A大…

【matlab函数】diff函数

diff函数是用来求导数的 更新日志:2021-3-16 经评论区SHolmesCSU 指正,此函数为求解差分,而非导数。 在matlab官方文档中,利用差分近似导数需要除以步长,即 diff(X)/step_size 目前用到的调用格式为diff(A&#x…

显示mnist手写数字

前言 可视化什么的,总是好的 方法一 其实也就是用到了Ruslan Salakhutdinov and Geoff Hinton提供的工具包 % Version 1.000 % % Code provided by Ruslan Salakhutdinov and Geoff Hinton % % Permission is granted for anyone to copy, use, modify, or distr…

【matlab函数】convn多维卷积

简单的卷积就不说了,向量卷积用此函数与用conv效果相同,矩阵卷积用此函数与conv2的二维卷积效果相同。 此函数的方便之处在于支持三维卷积:其实相对于conv2来说就是省了一个for循环。对于三维卷积,比如A矩阵大小为[2,3,3]&#x…

【caffe-Windows】mnist实例编译之model的使用-classification

仿照cifar10的模型使用,本文对mnist的训练方式做了部分修改 【注】本文caffe安装路径为E:\CaffeDev-GPU\caffe-master。请自行参考并修改相关路径(debug以及release参考你编译caffe时候采用的模式) 第一步 按照前面的model生成方法的前两步骤制作数据集&#xff…

误差error,偏置bias,方差variance的见解

更新日志:2020-3-10 谢谢ProQianXiao的指正。偏差-方差的确是在测试集中进行的。 之前的误解是,偏差和方差的计算是同一个模型对不同样本的预测结果的偏差和方差;而实际上是不同模型对同一个样本的预测结果的偏差和方差。 这时候就要祭出网…

【caffe-Windows】以mnist为例lmdb格式数据

前言 前面介绍的案例都是leveldb的格式,但是比较流行和实用的格式是lmdb,原因从此网站摘取 它们都是键/值对(Key/Value Pair)嵌入式数据库管理系统编程库。虽然lmdb的内存消耗是leveldb的1.1倍,但是lmdb的速度比level…

【caffe-Windows】mnist实例编译之model的使用-matlab

前言 针对上一个caffe文章留下的matlab手写数字识别的问题,感谢caffe中文社区的 ghgzh 的提示,原文请看:caffe中文社区 第一步 手写图片的制作方法我就不说了,直接把我自己画的几个数字放到云盘先: 三通道图像以及…

【caffe-Windows】训练自己数据——数据集格式转换

前言 看了mnist和cifar的实例,是不是想我们现实中一般都是一张张的图片,和实例里面都不一样呢?那么如何来进行训练呢?为了能够简便点,我们就不自己去采集数据集了,因为第一自己采集的数据集量可能不够&…

【caffe-windows】Linux至Windows平台的caffe移植

1、前言 主要参考两篇博客以及很多论坛解决细节问题: http://www.cnblogs.com/trantor/p/4570097.html https://initialneil.wordpress.com/2015/01/11/build-caffe-in-windows-with-visual-studio-2013-cuda-6-5-opencv-2-4-9/ 移植环境:Windows7…

【caffe-matlab】权重以及特征图的可视化

前言 移植了各种caffe,是时候进行下一步操作了,先拿可视化下手吧。大部分内容可能跟网上的方法不一样,大家看完我的博客最好去网上看看大牛们的博客,万一被我误导了,就罪过了o(╯□╰)o,开更.............…

【caffe-matlab】使用matlab训练caffe及绘制loss

前言 此博客主要介绍如何利用matlab一步一步训练caffe模型,类似使用caffe.exe 的train命令。 国际惯例,参考博客: http://caffe.berkeleyvision.org/tutorial/interfaces.html http://www.cnblogs.com/denny402/p/5110204.html 抱怨一…

【caffe-matlab】目标检测R-FCN算法于Windows下配置

前言 首先谢谢好友推荐的这篇论文及代码,前面学习的caffe可能比较浅显,想要深入caffe就可以从这个代码下手了,配置方法还是挺简单的,但是可能会出现部分问题。在作者的论文中有github的地址。注意,本文只介绍如何配置…

【写作】Texlive和Texmaker学习

前言 最近要看一些论文做一下笔记,所以准备使用一下比较流行的Texlive和Texmaker写一下。其实CSDN的Markdown也是不错滴。 首先国际惯例,贴几个地址: Texlive镜像下载地址:http://mirror.lzu.edu.cn/CTAN/systems/texlive/Imag…

《Neural Networks for Machine Learning》学习一

前言 最近报了一下Hinton大牛的coursera的神经网络课程,奈何比较懒,一直没看,还是写个博客督促自己比较好 贴一下课程地址:https://www.coursera.org/learn/neural-networks/home/week/1 第一讲主题是为何需要机器学习&#xf…

《Neural Networks for Machine Learning》学习二

前言 课程地址:https://www.coursera.org/learn/neural-networks/home/week/1‘’ 【Lecture 2】百度云下载地址:链接:http://pan.baidu.com/s/1nvMynhR 密码:ru3y 神经网络架构概览 前馈神经网络(Feed-Forward neural network)…