机器学习框架PyTorch详解和案列分析

目录

  • 一、基本介绍
  • 二、基本概念
  • 三、操作流程
  • 四、详细安装命令
  • 五、应用场景
  • 六、最新发展

PyTorch 是一个基于 Python 的科学计算包,主要针对两类人群:

  1. 作为 NumPy 的替代品,可以利用 GPU 的性能进行计算。
  2. 作为一个高灵活性、速度快的深度学习平台。
    PyTorch 相比 TensorFlow 而言,它的设计初衷是简单易用,所以它是基于动态图进行实现的,从而方便调试。当然,Tensorflow 在 1.5 版的时候就引入了 EagerExecution 机制实现了动态图,但它还是默认使用静态图。

一、基本介绍

PyTorch 是一个基于 Python 的机器学习框架,由 Facebook 于 2016 年发布。它提供了一组灵活且高效的工具,可用于构建和训练各种深度学习模型。PyTorch 的核心组件是张量,它是一个多维数组,可以用于存储和处理数据。PyTorch 的张量与 NumPy 的数组类似,但也提供了 GPU 加速和自动微分等功能。PyTorch 使用动态计算图,这意味着在运行时可以修改计算图,从而允许更灵活的模型构建和调试。这与 TensorFlow 等框架的静态计算图不同。PyTorch 支持自动微分,可以方便地计算张量的梯度。这为构建和训练深度学习模型提供了便利。PyTorch 提供了构建和训练神经网络的工具,包括各种层、激活函数、损失函数等等。PyTorch 还提供了可扩展的数据加载工具,可以方便地加载各种类型的数据集。PyTorch 可以利用 GPU 进行加速,这意味着它可以处理大规模的数据集和复杂的深度学习模型。PyTorch 还提供了许多工具集,如 torchvision 用于计算机视觉任务、torchtext 用于自然语言处理任务等。

二、基本概念

  1. 张量(Tensor):PyTorch 的核心组件是张量,它是一个多维数组,可以用于存储和处理数据。PyTorch 的张量与 NumPy 的数组类似,但也提供了 GPU 加速和自动微分等功能。
  2. 动态计算图(Dynamic Computational Graph):PyTorch 使用动态计算图,这意味着在运行时可以修改计算图,从而允许更灵活的模型构建和调试。这与 TensorFlow 等框架的静态计算图不同。
  3. 自动微分(Automatic Differentiation):PyTorch 支持自动微分,可以方便地计算张量的梯度。这为构建和训练深度学习模型提供了便利。
  4. 神经网络(Neural Networks):PyTorch 提供了构建和训练神经网络的工具,包括各种层、激活函数、损失函数等等。
  5. 数据加载(Data Loading):PyTorch 提供了可扩展的数据加载工具,可以方便地加载各种类型的数据集。
  6. GPU 加速(GPU Acceleration):PyTorch 可以利用 GPU 进行加速,这意味着它可以处理大规模的数据集和复杂的深度学习模型。
  7. 工具集(Toolkits):PyTorch 提供了许多工具集,如 torchvision 用于计算机视觉任务、torchtext 用于自然语言处理任务等。

三、操作流程

  1. 安装 Python 和 pip:确保安装了 Python,并使用 pip 安装 PyTorch。
  2. 安装 CUDA 和 CUDNN:如果使用 GPU,需要安装 CUDA 和 CUDNN。
  3. 配置环境变量:配置环境变量,以便在运行 Python 时可以找到 PyTorch 和 CUDA。
  4. 创建动态计算图:使用 PyTorch 创建动态计算图,包括输入张量、各种层、激活函数、损失函数等。
  5. 编译模型:使用 PyTorch 编译模型,包括定义优化器、损失函数、评估函数等。
  6. 训练模型:使用 PyTorch 训练模型,包括迭代训练、批量归一化、调整学习率等。
  7. 调试模型:使用 PyTorch 的动态计算图功能,调试模型的正确性和性能。
  8. 部署模型:使用 PyTorch 部署模型,包括将模型导出为 ONNX、TorchScript、C++ 等格式。

四、详细安装命令

  1. 安装 Python:在官网下载 Python 安装包,并按照提示安装。
  2. 安装 pip:在 Python 安装完成后,使用以下命令安装 pip:
pip install pip  
  1. 安装 PyTorch:在官网下载 PyTorch 安装包,并按照提示安装。例如:
pip install torch torchvision  
  1. 安装 CUDA:如果使用 GPU,需要安装 NVIDIA CUDA。在官网下载 CUDA 安装包,并按照提示安装。例如:
sudo apt-get install nvidia-cuda-11.0  
  1. 安装 CUDNN:如果使用 GPU,还需要安装 NVIDIA CUDNN。在官网下载 CUDNN 安装包,并按照提示安装。例如:
sudo apt-get install nvidia-cudnn-11.0  
  1. 配置环境变量:配置环境变量,以便在运行 Python 时可以找到 PyTorch 和 CUDA。例如:
export PYTHONPATH=/path/to/pytorch  
export LD_LIBRARY_PATH=/path/to/cuda/lib64  
export CUDA_VISIBLE_DEVICES=0  
  1. 创建动态计算图:使用 PyTorch 创建动态计算图,包括输入张量、各种层、激活函数、损失函数等。例如:
import torch
# 创建输入张量  
input = torch.randn(10, 3, 224, 224)
# 创建卷积层  
conv1 = torch.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
# 创建激活函数  
relu = torch.nn.ReLU()
# 创建全连接层  
fc = torch.nn.Linear(64 * 64 * 2, 10)
# 创建损失函数  
criterion = torch.nn.CrossEntropyLoss()
# 创建模型  
model = torch.nn.Sequential(conv1, relu, conv1, relu, conv1, relu, fc)
# 编译模型  
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型  
for epoch in range(num_epochs):  for inputs, targets in dataloader:  optimizer.zero_grad()  outputs = model(inputs)  loss = criterion(outputs, targets)  loss.backward()  optimizer.step()  
  1. 部署模型:使用 PyTorch 部署模型,包括将模型导出为 ONNX、TorchScript、C++ 等格式。例如:
import torch
# 创建模型  
model = torch.nn.Sequential(torch.nn.Linear(10, 1), torch.nn.ReLU(), torch.nn.Linear(1, 1))
# 编译模型  
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型  
for epoch in range(num_epochs):  for inputs, targets in dataloader:  optimizer.zero_grad()  outputs = model(inputs)  loss = criterion(outputs, targets)  loss.backward()  optimizer.step()
# 导出模型为 ONNX 格式  
torch.onnx.export(model, inputs, f"model.onnx")  

五、应用场景

PyTorch 是一个流行的深度学习框架,它可以用于各种应用场景,例如图像分类、目标检测、文本分类等。下面是一些 PyTorch 的应用场景和案例分析:

  1. 图像分类:可以使用 PyTorch 实现图像分类任务,例如使用 ResNet 模型进行图像分类。以下是一个简单的 PyTorch 代码示例:
import torch  
import torch.nn as nn  
import torch.optim as optim
# 定义模型  
model = torch.nn.ResNet(18, num_classes=10)
# 定义损失函数和优化器  
criterion = nn.CrossEntropyLoss()  
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型  
for epoch in range(num_epochs):  for inputs, targets in dataloader:  optimizer.zero_grad()  outputs = model(inputs)  loss = criterion(outputs, targets)  loss.backward()  optimizer.step()  
  1. 目标检测:可以使用 PyTorch 实现目标检测任务,例如使用 Faster R-CNN 模型进行目标检测。以下是一个简单的 PyTorch 代码示例:
import torch  
import torch.nn as nn  
import torchvision.models as models
# 定义模型  
model = models.faster_rcnn(pretrained=True)
# 定义损失函数和优化器  
criterion = nn.CrossEntropyLoss()  
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型  
for epoch in range(num_epochs):  for inputs, targets in dataloader:  optimizer.zero_grad()  outputs = model(inputs)  loss = criterion(outputs[1], targets)  loss.backward()  optimizer.step()  
  1. 文本分类:可以使用 PyTorch 实现文本分类任务,例如使用 BERT 模型进行文本分类。以下是一个简单的 PyTorch 代码示例:
import torch  
import torch.nn as nn  
import torch.optim as optim  
from transformers import BertModel
# 定义模型  
model = BertModel.from_pretrained('bert-base-uncased')
# 定义损失函数和优化器  
criterion = nn.CrossEntropyLoss()  
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型  
for epoch in range(num_epochs):  for inputs, targets in dataloader:  optimizer.zero_grad()  outputs = model(inputs)  loss = criterion(outputs, targets)  loss.backward()  optimizer.step()  

以上是一些 PyTorch 的应用场景和案例分析。PyTorch 还可以用于许多其他深度学习任务,例如语音识别、视频分类等。

六、最新发展

PyTorch 是一个不断发展的深度学习框架,其最新发展包括以下几个方面:

  1. 推出新版本:PyTorch 的新版本不断推出,例如 PyTorch 1.7.0、PyTorch 1.8.0 等,这些新版本通常包括性能提升、新功能添加和错误修复等。
  2. 扩展库:PyTorch 的扩展库不断增加,例如 torchvision、torchtext、torch 听说等,这些扩展库提供了许多有用的工具和函数,使得 PyTorch 更加便捷和灵活。
  3. 集成 C++ 接口:PyTorch 提供了 C++ 接口,使得 C++ 代码可以与 PyTorch 代码无缝交互。这使得 PyTorch 可以更好地与底层硬件和操作系统交互,提高了性能和效率。
  4. 强化对分布式计算的支持:PyTorch 对分布式计算的支持不断加强,例如 PyTorch 提供了分布式数据并行和模型并行的功能,使得训练速度更快、效率更高。
  5. 提供更多的深度学习算法和模型:PyTorch 提供了更多的深度学习算法和模型,例如 BERT、GPT 等,这些算法和模型可以更好地处理自然语言处理和计算机视觉等任务。
    总结起来,PyTorch 不断发展和更新,其功能和性能不断提升,为深度学习研究和应用提供了更加强大和便捷的工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/24561.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【windows】powershell使用ll、head、tail等linux命令

powershell使用ll、head、tail等linux命令 最近在windows系统上办公比较多,想使用linux上经常用到的ll、head、tail等命令。发现可以通过修改powershell的配置文件来实现。具体地,一般需要修改以下路径的配置文件,没有的话就在该路径下创建一…

Unity学习参考文档和开发工具

☺ unity的官网文档:脚本 - Unity 手册 ■ 学习方式: 首先了解unity相关概述,快速认识unity编辑器,然后抓住重点的学:游戏对象、组件|C#脚本、预制体、UI ☺ 学习过程你会发现,其实Unity中主要是用c#进行开…

[Docker实现测试部署CI/CD----自由风格和流水线的CD操作(6)]

目录 12、自由风格的CD操作发布 V1.0.0 版本修改代码并推送GitLab 中项目打 Tag 发布 V2.0.0 版本Jenkins 配置 tag 参数添加 Git 参数添加 checkout 命令修改构建命令配置修改 SSH 配置 部署 v1.0.0重新构建工程构建结果 部署 v2.0.0重新构建工程访问 部署v3.0.0 13、流水线任…

Jmeter函数助手(一)随机字符串(RandomString)

一、目标 实现一个请求单次调用,请求体里多个集合中的相同参数(zxqs)值随机从序列{01、02、03、03、04、05、06、07、08}中取 若使用CSV数据文件、用户参数等参数化手段,单次执行请求,请求体里多个集合中的相同参数&a…

传染病学模型 | Python实现基于使用受控SIR模型分析SARS-CoV-2疫情

效果一览 文章概述 传染病学模型 | Python实现基于使用受控 SIR 模型分析 SARS-CoV-2 疫情 源码设计 import jax.numpy as np import

webpack基础知识七:说说webpack proxy工作原理?为什么能解决跨域?

一、是什么 webpack proxy,即webpack提供的代理服务 基本行为就是接收客户端发送的请求后转发给其他服务器 其目的是为了便于开发者在开发模式下解决跨域问题(浏览器安全策略限制) 想要实现代理首先需要一个中间服务器,webpac…

Python 开发工具 Pycharm —— 使用技巧Lv.2

pydoc是python自带的一个文档生成工具,使用pydoc可以很方便的查看类和方法结构 本文主要介绍:1.查看文档的方法、2.html文档说明、3.注释方法、 一、查看文档的方法 **方法1:**启动本地服务,在web上查看文档 命令【python3 -m…

基于STM32CubeMX和keil采用通用定时器中断实现固定PWM可调PWM波输出分别实现LED闪烁与呼吸灯

文章目录 前言1. PWM波阐述2. 通用定时器2.1 为什么用TIM142.2 TIM14功能介绍2.3 一些配置参数解释2.4 PWM实现流程&中断2.4.1 非中断PWM输出(LED闪烁)2.4.2 中断PWM输出(LED呼吸灯) 3. STM32CubeMX配置3.1 GPIO配置3.2 时钟配置3.3 定时器相关参数配置3.4 Debug配置3.5 中…

ESP32-C2开发板 ESP8684芯片 兼容ESP32-C3开发

C2是一个芯片采用4毫米x 4毫米封装,与272 kB内存。它运行框架,例如ESP-Jumpstart和ESP造雨者,同时它也运行ESP-IDF。ESP-IDF是Espressif面向嵌入式物联网设备的开源实时操作系统,受到了全球用户的信赖。它由支持Espressif以及所有…

2023/8/5总结

主要实现了: 举报: 内容管理搜索的实现 管理员界面 还有消息没写,以及一些小细节

C 语言的类型转换

文章目录 自动类型转换强制类型转换 自动类型转换 Statements and expressions should normally use variables and constants of just one type. If, however, you mix types, C doesn’t stop dead in its tracks the way, say, Pascal does. Instead, it uses a set of rul…

Linux修改系统语言

sudo dpkg-reconfigure locales 按pagedown键,移动红色光标到 zh_CN.UTF-8 UTF-8,空格标记*号(没标记下一页没有这一项),回车。 下一页选择 zh_CN.UTF-8。 如果找不到 dpkg-reconfigure whereis dpkg-reconfigure …

HTML 初

前言 HTML的基本骨架 HTML基本骨架是构建网页的最基本的结果。 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0">…

iOS——Block回调

先跟着我实现最简单的 Block 回调传参的使用&#xff0c;如果你能举一反三&#xff0c;基本上可以满足了 OC 中的开发需求。已经实现的同学可以跳到下一节。 首先解释一下我们例子要实现什么功能&#xff08;其实是烂大街又最形象的例子&#xff09;&#xff1a; 有两个视图控…

【Linux操作系统】深入理解Linux磁盘分区和挂载

Linux磁盘分区和挂载是系统管理中非常重要的一部分&#xff0c;它们可以帮助我们更好地管理存储空间和文件系统。本文将详细介绍Linux磁盘分区和挂载的概念、原理以及实践操作&#xff0c;并提供相应的例子、代码和指令&#xff0c;帮助读者全面了解和掌握这两个关键概念。 文章…

互感和励磁电感(激磁电感)的关系

互感器&#xff0c;变压器&#xff0c;他们之间有着千丝万缕的联系&#xff0c;自感&#xff0c;互感&#xff0c;激磁电感&#xff0c;漏感、耦合系数、理想互感器、理想变压器&#xff0c;这些东西的概念理解和相互之间的关系式。都搞明白了吗&#xff1f;

vim怎么使用,vim使用教程,vimtutor怎么切换中文 汉化

vim 使用 在安装了 vim 的 unix 系统下可以使用 vimtutor zh_cn 开启下面的教程 序言 欢 迎 阅 读 《 V I M 教 程 》 —— 版本 1.7 Vim 是一个具有很多命令的功能非常强大的编辑器。限于篇幅&#xff0c;在本教程当中就不详细介绍了。本教程的…

elasticsearch 将时间类型为时间戳保存格式的时间字段格式化返回

dsl查询用法如下&#xff1a; GET /your_index/_search {"_source": {"includes": ["timestamp", // Include the timestamp field in the search results// Other fields you want to include],"excludes": []},"query": …

外国机构在中国境内提供金融信息服务23家许可名单

6月30日&#xff0c;国家互联网信息办公室公布23家外国&#xff08;境外&#xff09;机构在中国境内提供金融信息服务许可名单&#xff0c;如下&#xff1a;

LeetCode643. 子数组最大平均数 I

题干 给你一个由 n 个元素组成的整数数组 nums 和一个整数 k 。 请你找出平均数最大且 长度为 k 的连续子数组&#xff0c;并输出该最大平均数。 任何误差小于 10^-5 的答案都将被视为正确答案。 示例1&#xff1a; 输入&#xff1a;nums [1,12,-5,-6,50,3], k 4 输出&am…