Cluster下的数据写入
数据写入的实现主要分析cluster/points_writer.go中的WritePoints函数的实现// WritePoints writes across multiple local and remote data nodes according the consistency level.func (w *PointsWriter) WritePoints(p *WritePointsRequest) error {
w.statMap.Add(statWriteReq, 1)
w.statMap.Add(statPointWriteReq, int64(len(p.Points))) //2.1 先获取RetentionPolicy
if p.RetentionPolicy == "" {
db, err := w.MetaClient.Database(p.Database) if err != nil { return err
} else if db == nil { return influxdb.ErrDatabaseNotFound(p.Database)
}
p.RetentionPolicy = db.DefaultRetentionPolicy
} // 2.2 生成 shardMap
shardMappings, err := w.MapShards(p) if err != nil { return err
} // Write each shard in it's own goroutine and return as soon
// as one fails.
ch := make(chan error, len(shardMappings.Points)) for shardID, points := range shardMappings.Points {
// 2.3 写入数据到Shard
go func(shard *meta.ShardInfo, database, retentionPolicy string, points []models.Point) {
ch
}(shardMappings.Shards[shardID], p.Database, p.RetentionPolicy, points)
} // Send points to subscriptions if possible.
ok := false
// We need to lock just in case the channel is about to be nil'ed
w.mu.RLock()
select { case w.subPoints
ok = true
default:
}
w.mu.RUnlock() if ok {
w.statMap.Add(statSubWriteOK, 1)
} else {
w.statMap.Add(statSubWriteDrop, 1)
} // 2.4 等待写入完成
for range shardMappings.Points {
select { case
}
}
} return nil}上面的函数实现主要分如下几个步骤
2.1 获取对应的RetentionPolicy
2.2 生成ShardMap, 将各个point对应到相应ShardGroup中的Shard中, 这步很关键
2.3 按ShardId不同,开启新的goroutine, 将points写入相应的Shard,可能设计对写入数据到其它的DataNode上;
2.4 等待写入完成或退出
ShardMap的生成先讲一下ShardGroup的概念
1.1 写入Influxdb的每一条数据对带有相应的time时间,每一个SharGroup都有自己的start和end时间,这个时间跨度是由用户写入时选取的RetentionPolicy时的ShardGroupDarution决定,这样每条写入的数据就必然仅属于一个确定的ShardGroup中;
主要实现在cluster/points_writer.go中的MapShards中func (w *PointsWriter) MapShards(wp *WritePointsRequest) (*ShardMapping, error) { // holds the start time ranges for required shard groups
timeRanges := map[time.Time]*meta.ShardGroupInfo{}
rp, err := w.MetaClient.RetentionPolicy(wp.Database, wp.RetentionPolicy) if err != nil { return nil, err
} if rp == nil { return nil, influxdb.ErrRetentionPolicyNotFound(wp.RetentionPolicy)
} for _, p := range wp.Points {
timeRanges[p.Time().Truncate(rp.ShardGroupDuration)] = nil
} // holds all the shard groups and shards that are required for writes
for t := range timeRanges {
sg, err := w.MetaClient.CreateShardGroup(wp.Database, wp.RetentionPolicy, t) if err != nil { return nil, err
}
timeRanges[t] = sg
}
mapping := NewShardMapping() for _, p := range wp.Points {
sg := timeRanges[p.Time().Truncate(rp.ShardGroupDuration)]
sh := sg.ShardFor(p.HashID())
mapping.MapPoint(&sh, p)
} return mapping, nil}我们来拆解下上面函数的实现
3.1 扫描所有的points, 按时间确定我们需要多个ShardGroupfor _, p := range wp.Points {
timeRanges[p.Time().Truncate(rp.ShardGroupDuration)] = nil
}
3.2 调用w.MetaClient.CreateShardGroup, 如果ShardGroup存在直接返回ShardGroup信息,如果不存在创建,创建过程涉及到将CreateShardGroup的请求发送给MetadataServer并等待本地更新到新的MetaData数据;sg, err := w.MetaClient.CreateShardGroup(wp.Database, wp.RetentionPolicy, t)
3.3 分析ShardGroup的分配规则, 在services/meta/data.go中的CreateShardGroupfunc (data *Data) CreateShardGroup(database, policy string, timestamp time.Time) error {
... // Require at least one replica but no more replicas than nodes.
// 确认复本数,不能大于DataNode节点总数
replicaN := rpi.ReplicaN if replicaN == 0 {
replicaN = 1
} else if replicaN > len(data.DataNodes) {
replicaN = len(data.DataNodes)
} // Determine shard count by node count divided by replication factor.
// This will ensure nodes will get distributed across nodes evenly and
// replicated the correct number of times.
// 根据复本数确定Shard数量
shardN := len(data.DataNodes) / replicaN // Create the shard group.
// 创建ShardGroup
data.MaxShardGroupID++
sgi := ShardGroupInfo{}
sgi.ID = data.MaxShardGroupID
sgi.StartTime = timestamp.Truncate(rpi.ShardGroupDuration).UTC()
sgi.EndTime = sgi.StartTime.Add(rpi.ShardGroupDuration).UTC() // Create shards on the group.
sgi.Shards = make([]ShardInfo, shardN) for i := range sgi.Shards {
data.MaxShardID++
sgi.Shards[i] = ShardInfo{ID: data.MaxShardID}
} // Assign data nodes to shards via round robin.
// Start from a repeatably "random" place in the node list.
// ShardInfo中的Owners记录了当前Shard所有复本所在DataNode的信息
// 分Shard的所有复本分配DataNode
// 使用data.Index作为基数确定开始的DataNode,然后使用 round robin策略分配
// data.Index:每次meta信息有更新,Index就会更新, 可以理解为meta信息的版本号
nodeIndex := int(data.Index % uint64(len(data.DataNodes))) for i := range sgi.Shards {
si := &sgi.Shards[i] for j := 0; j
nodeID := data.DataNodes[nodeIndex%len(data.DataNodes)].ID
si.Owners = append(si.Owners, ShardOwner{NodeID: nodeID})
nodeIndex++
}
} // Retention policy has a new shard group, so update the policy. Shard
// Groups must be stored in sorted order, as other parts of the system
// assume this to be the case.
rpi.ShardGroups = append(rpi.ShardGroups, sgi)
sort.Sort(ShardGroupInfos(rpi.ShardGroups)) return nil
}
3.3 按每一个具体的point对应到ShardGroup中的一个Shard: 按point的HashID来对Shard总数取模,HashID是measurment + tag set的Hash值for _, p := range wp.Points {
sg := timeRanges[p.Time().Truncate(rp.ShardGroupDuration)]
sh := sg.ShardFor(p.HashID())
mapping.MapPoint(&sh, p)
}
....
func (sgi *ShardGroupInfo) ShardFor(hash uint64) ShardInfo { return sgi.Shards[hash%uint64(len(sgi.Shards))]
}
数据按一致性要求写入过程简述
1.1 根据一致性要求确认需要成功写入几份switch consistency { // 对于ConsistencyLevelAny, ConsistencyLevelOne只需要写入一份即满足一致性要求,返回客户端
case ConsistencyLevelAny, ConsistencyLevelOne:
required = 1
case ConsistencyLevelQuorum:
required = required/2 + 1
}
1.2 根据Shard.Owners对应的DataNode, 向其中的每个DataNode写入数据,如果是本机,直接调用w.TSDBStore.WriteToShard写入;如果非本机,调用err := w.ShardWriter.WriteShard(shardID, owner.NodeID, points);
1.3 写入远端失败时,数据写入HintedHandoff本地磁盘队列多次重试写到远端,直到数据过期被清理;对于一致性要求是ConsistencyLevelAny, 写入本地HintedHandoff成功,就算是写入成功;w.statMap.Add(statWritePointReqHH, int64(len(points)))
hherr := w.HintedHandoff.WriteShard(shardID, owner.NodeID, points) if hherr != nil {
ch
} if hherr == nil && consistency == ConsistencyLevelAny {
ch
}
1.4 等待写入超时或完成for range shard.Owners {
select { case
w.statMap.Add(statWriteTimeout, 1) // return timeout error to caller
return ErrTimeout case result :=
if result.Err != nil { if writeError == nil {
writeError = result.Err
} continue
}
wrote++ // 写入已达到一致性要求,就立即返回
if wrote >= required {
w.statMap.Add(statWriteOK, 1) return nil
}
}
}
HintedHandoff服务定义在services/hh/service.go中
写入HintedHandoff中的数据,按NodeID的不同写入不同的目录,每个目录下又分多个文件,每个文件作为一个segment, 命名规则就是依次递增的id, id的大小按序就是写入的时间按从旧到新排序;
hitnedhandoff.png
HintedHandoff服务会针对每一个远端DataNode创建NodeProcessor, 每个负责自己DataNode的写入, 运行在一个单独的goroutine中
在每个goroutine中,作两件事:一个是定时清理过期的数据,如果被清理掉的数据还没有成功写入到远端,则会丢失;二是从文件读取数据写入到远端;func (n *NodeProcessor) run() {
defer n.wg.Done()
... for {
select { case
case
n.Logger.Printf("failed to purge for node %d: %s", n.nodeID, err.Error())
} case
limiter := NewRateLimiter(n.RetryRateLimit) for {
c, err := n.SendWrite() if err != nil { if err == io.EOF { // No more data, return to configured interval
currInterval = time.Duration(n.RetryInterval)
} else {
currInterval = currInterval * 2
if currInterval > time.Duration(n.RetryMaxInterval) {
currInterval = time.Duration(n.RetryMaxInterval)
}
} break
} // Success! Ensure backoff is cancelled.
currInterval = time.Duration(n.RetryInterval) // Update how many bytes we've sent
limiter.Update(c) // Block to maintain the throughput rate
time.Sleep(limiter.Delay())
}
}
}
}数据的本地存储和读取
5.1 定义在services/hh/queue.go,所有的segment file在内存中组织成一个队列,读从head指向的segment读取,写入到tail指向的segment, 每个segment文件的最后8字节记录当前segment文件已经读到什么位置
5.2 清理,当这个segment文件内容都发送完当前文件会被删除,周期性清理每次只会check当前head指向的segment是否需要清理掉
作者:扫帚的影子
链接:https://www.jianshu.com/p/6a94486b2daa