亲和性分析根据样本个体之间的相似度,确定它们关系的亲疏。应用场景:
1.向网站用户提供多样化的服务或投放定向广告。
2.为了向用户推荐电影或商品
3.根据基因寻找有亲缘关系的人
比如:统计顾客购买了商品1,然后再购买商品2的比率,算相似度。
importnumpy as np
dataset_filename= "affinity_dataset.txt"x=np.loadtxt(dataset_filename)#print x[:5]#上述代码的结果代表前5次交易中顾客购买了什么。用“1”表示购买,“0”表示没有购买。#这五种商品分别是:面包,牛奶,奶酪,苹果和香蕉。#现在我们要找出“如果顾客购买了商品x,那么他们可能愿意购买商品y”的规则(一条规则有前提条件和结论两部分组成)。衡量一个规则的优劣通常有:支持度(指数据集中规则应验的次数)和置信度(指规则准确率如何,计算方法是:规则应验次数除以满足前提条件的所有次数)。
#举个例子计算有多少人购买了苹果。
num_apples_purchases =0for sample inx:if sample[3] == 1:
num_apples_purchases+= 1
#print "{0} people bought Apples".format(num_apples_purchases)#接着我们计算有多少人购买了苹果,后又购买了香蕉。同时计算支持度和置信度。
num_apples_bananas_purchases =0for sample inx:if sample[3] == 1 and sample[4] == 1:
num_apples_bananas_purchases+= 1valid_rules=num_apples_bananas_purchases
num_occurances=num_apples_purchases
support=valid_rules
confidence= valid_rules/float(num_occurances)print "{0} people bought Apples, but {1} people also bought bananas".format(num_apples_purchases, num_apples_bananas_purchases)print "------"
#支持度
printsupport#置信度
print "{0:.3f}".format(confidence)#我们接着将所有规则下的可能性都统计出来,找出亲和性最高的几个。首先,分为两种:一种是规则应验,一种是规则无效。分别创建字典。字典的键是由条件和结论组成的元组,元组元素为特征在特征列表中的索引值,比如“如果顾客买了苹果,他们也会买香蕉”就用(3,4)表示。这里使用defaultdict,好处是如果查找的键不存在,返回一个默认值。
from collections importdefaultdict
features= ["bread", "milk", "cheese", "apple", "banana"]
valib_rules=defaultdict(int)
invalib_rules=defaultdict(int)
num_occurances=defaultdict(int)#依次对样本的每个个体及个体的每个特征值进行处理。第一个特征为规则的前提条件。
for sample inx:for premise in xrange(4):if sample[premise] ==0:continuenum_occurances[premise]+= 1
#比如“顾客买了苹果,他们也买了苹果”,这样的规则是没有意义的。
for conclusion inxrange(len(features)):if premise ==conclusion:continue
if sample[conclusion] == 1:
valib_rules[(premise, conclusion)]+= 1
else:
invalib_rules[(premise, conclusion)]+= 1support=valib_rules
confidence=defaultdict(float)'''for premise, conclusion in valib_rules.keys():
rule = (premise, conclusion)
confidence[rule] = valib_rules[rule] / num_occurances[premise]'''
#这样我们就得到了支持度字典和置信度字典。我们再来创建一个函数,以便更加方便查看结果。
defprint_rule(premise, conclusion, support, confidence, features):
premise_name=features[premise]
conclusion_name=features[conclusion]
confidence[(premise, conclusion)]= valib_rules[(premise, conclusion)] /float(num_occurances[premise])print "Rule: If a person buys {0} they will also buy {1}".format(premise_name, conclusion_name)print "- Support: {0}".format(support[(premise, conclusion)])print "- Confidence: {0:.3f}".format(confidence[(premise, conclusion)])if __name__ == "__main__":
premise= 1conclusion= 3
#print print_rule(premise, conclusion, support, confidence, features)
#排序找出最佳的规则。对字典排序:首先字典的items()函数返回包含字典所有元素的列表,再使用itemgetter()类作为键,这样就可以对嵌套列表进行排序了。
from operator importitemgetter
sorted_support= sorted(support.items(), key=itemgetter(1), reverse=True)#提取支持度最高的5条
for index in range(5):print "Rule #{0}".format(index + 1)
premise, conclusion=sorted_support[index][0]
print_rule(premise, conclusion, support, confidence, features)#总结亲和性分析,可以清楚的看出哪两种商品一起购买的几率要大些,经理就可以根据这些规则来调整商品摆放的位置,从而为商家带来更大的经济效益。
affinity_dataset.txt
0 1 0 0 0
1 1 0 0 0
0 0 1 0 1
1 1 0 0 0
0 0 1 1 1
0 1 0 0 0
0 0 1 1 1
0 0 1 1 0
0 1 0 1 0
0 1 0 0 1
0 0 0 1 0
1 0 1 0 0
1 0 0 0 1
0 1 1 0 0
0 0 1 0 1
0 1 0 1 0
1 1 0 1 1
0 0 0 1 1
0 1 0 0 1
1 1 0 1 0
0 1 1 0 0
0 1 0 0 1
0 0 1 0 0
1 0 0 0 1
0 1 0 1 0
1 0 0 1 1
0 1 1 0 0
0 1 0 0 1
0 0 0 0 1
1 0 0 0 1
0 1 0 1 1
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
1 0 0 1 0
0 1 0 0 1
1 1 0 0 0
0 0 0 0 1
0 1 0 1 1
0 1 0 1 0
0 1 0 0 1
1 1 1 1 0
1 0 0 0 1
0 0 0 1 1
1 1 0 0 1
0 1 0 0 0
0 1 1 0 0
0 1 0 1 1
0 1 0 0 1
0 0 1 1 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
1 0 0 0 0
1 1 1 0 1
0 0 1 1 1
0 1 0 0 0
0 0 1 1 0
0 1 0 0 1
0 0 1 0 0
0 1 0 0 0
1 0 0 0 1
0 1 0 0 0
0 1 1 0 1
0 0 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 1 1
1 1 0 0 1
0 0 1 1 0
0 0 1 1 0
0 0 1 1 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
1 1 0 0 1
0 1 0 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 0 0 1
1 0 0 0 0
1 0 0 1 1
0 1 1 1 1
1 0 0 0 1
0 0 1 0 1
0 1 1 1 0
1 1 0 1 1
1 0 1 0 1
0 0 1 1 1
1 1 1 1 0
0 1 0 0 1
0 1 0 0 1
1 1 0 1 1