PyTorch深度学习实战(9)——学习率优化

PyTorch深度学习实战(9)——学习率优化

    • 0. 前言
    • 1. 学习率简介
    • 2. 梯度值、学习率和权重之间的相互作用
    • 3. 学习率优化实战
      • 3.1 学习率对缩放后的数据集的影响
      • 3.2 学习率对未缩放数据集的影响
    • 小结
    • 系列链接

0. 前言

学习率( learning rate )是神经网络训练中一个重要的超参数,用于控制模型更新参数的步长大小,它决定了每次迭代中模型参数更新的幅度。学习率的选择对于训练的结果具有重要影响,学习率过高会导致模型震荡不收敛甚至发散,无法有效优化目标函数;而学习率过低则会导致收敛速度缓慢,需要更多的迭代才能达到较好的效果。本节首先介绍学习率如何影响模型训练,并通过修改学习率观察不同学习率对模型性能的影响。

1. 学习率简介

在神经网络训练中,我们通过最小化损失函数来优化模型的参数。梯度下降是一种常用的优化算法,它通过计算损失函数对于每个参数的导数来指导参数的更新,而学习率就是梯度下降算法中的一个重要的调节参数。
为了了解学习率对模型训练的影响,我们尝试拟合以下简单方程:

y = 3 × x y=3\times x y=3×x

其中, y y y 是输出, x x x 是输入。给定一组输入和预期输出值,我们使用不同的学习率拟合方程,以了解学习率的影响。

(1) 定义输入和输出数据集:

x = [[1],[2],[3],[4]]
y = [[3],[6],[9],[12]]

(2) 定义 feed_forward() 函数,此处使用的网络并不包含隐藏层:

y = w × x + b y=w\times x+b y=w×x+b

在以上函数中,我们尝试估计参数 w w w b b b

from copy import deepcopy
import numpy as np
def feed_forward(inputs, outputs, weights):out = np.dot(inputs,weights[0])+ weights[1]mean_squared_error = np.mean(np.square(out - outputs))return mean_squared_error

(3) 定义 update_weights() 函数利用梯度下降更新网络权重:

def update_weights(inputs, outputs, weights, lr):original_weights = deepcopy(weights)org_loss = feed_forward(inputs, outputs, original_weights)updated_weights = deepcopy(weights)for i, layer in enumerate(original_weights):for index, weight in np.ndenumerate(layer):temp_weights = deepcopy(weights)temp_weights[i][index] += 0.0001_loss_plus = feed_forward(inputs, outputs, temp_weights)grad = (_loss_plus - org_loss)/(0.0001)updated_weights[i][index] -= grad*lrreturn updated_weights

(4) 将权重和偏差值初始化为随机值:

W = [np.array([[0]], dtype=np.float32), np.array([[0]], dtype=np.float32)]

权重和偏差值随机初始化为 0,输入权重值的形状为 1 x 1,因为输入中每个数据点的形状为 1 x 1,偏置值的形状为 1 x 1 (输出中只有一个节点,每个输出只有一个值)。

(5) 将学习率设为 0.01 执行 update_weights() 函数,循环迭代 1,000 次,并检查权重值( W )随时间的变化:

weight_value = []
for epx in range(1000):W = update_weights(x,y,W,0.01)weight_value.append(W[0][0][0])

在以上代码中,设置学习率为 0.01 并重复调用 update_weights() 函数以在每个 epoch 结束时获取修改后的权重。此外,在每个 epoch 中,我们将最近更新的权重作为输入,以在下一 epoch 中继续更新权重。

(6) 绘制每个 epoch 结束时的权重参数值:

import matplotlib.pyplot as plt
plt.plot(weight_value)
plt.title('Weight value over increasing epochs')
plt.xlabel('Epochs')
plt.ylabel('Weight value')
plt.show()

权重变化

可以看到,在上图中,权重值逐渐增加,最终在 3 附近达到稳定。
为了了解学习率对权重更新的影响,我们测试当学习率为 0.11 时,权重值随时间的变化情况,下图显示了使用不同学习率时,权重的变化情况:

权重变化

可以看到,当学习率非常小时( 0.01 )时,权重值缓慢向最优值移动(需要更多的 epoch);而在学习率较高( 0.1 )时,权重值最初变化较为剧烈,然后迅速得到最优值(需要较少的 epoch);而当学习率过高( 1 )时,权重值无法达到最优值。
学习率低时权重值没有大幅变化的原因是我们将权重更新量限制为 梯度x学习率,本质上是由于学习率较小导致更新量较小;当学习率过高时,权重更新量相应较高,损失的变化非常小,以至于权重无法达到最优值。

2. 梯度值、学习率和权重之间的相互作用

为了更深入地了解梯度值、学习率和权重之间的相互作用,我们只运行 10epochupdate_weights() 函数,并打印以下值以了解它们如何随 epoch 变化:

  • 每个 epoch 开始时的权重值
  • 权重更新前的损失
  • 少量更新权重后的损失
  • 梯度值

修改 update_weights() 函数以打印以上值:

def update_weights(inputs, outputs, weights, lr):original_weights = deepcopy(weights)org_loss = feed_forward(inputs, outputs, original_weights)updated_weights = deepcopy(weights)for i, layer in enumerate(original_weights):for index, weight in np.ndenumerate(layer):temp_weights = deepcopy(weights)temp_weights[i][index] += 0.0001_loss_plus = feed_forward(inputs, outputs, temp_weights)grad = (_loss_plus - org_loss)/(0.0001)updated_weights[i][index] -= grad*lrif(i % 2 == 0):print('weight value:', np.round(original_weights[i][index],2), 'original loss:', np.round(org_loss,2), 'loss_plus:', np.round(_loss_plus,2), 'gradient:', np.round(grad,2), 'updated_weights:', np.round(updated_weights[i][index],2))return updated_weights

在以上代码中,打印原始权重值( original_weights[i][index])、损失( org_loss)、权重更新后损失值( _loss_plus)、梯度( grad )以及更新后的权重值( updated_weights)。使用不同的学习率,观察以上各值如何随着 epoch 变化。
学习率 0.01 时:

W = [np.array([[0]], dtype=np.float32), np.array([[0]], dtype=np.float32)]
weight_value = []
for epx in range(10):W = update_weights(x,y,W,0.01)weight_value.append(W[0][0][0])
print(W)
import matplotlib.pyplot as plt
plt.plot(weight_value[:100])
plt.title('Weight value over increasing epochs when learning rate is 0.01')
plt.xlabel('Epochs')
plt.ylabel('Weight value')
plt.show()

输出结果如下所示:

学习率为 0.01

可以看到,当学习率为 0.01 时,损失值缓慢下降,权重值也缓慢向最优值移动。
学习率为 0.1,改变学习率参数值运行相同代码的输出如下:

学习率为 0.1

对比学习率分别为 0.010.1 的结果,主要区别如下:与学习率为 0.1 时相比,学习率为 0.01 时,权重的更新要慢得多,更新速度较慢的原因是学习率较低,因为权重是通过梯度乘以学习率来更新的。
除了权重更新的幅度,我们还要注意权重更新的方向:当权重值小于最优值时梯度为负,当权重值大于最优值时梯度为正,从而保证了网络在正确的方向上更新权重值。
最后,我们观察与学习率为 1 时的运行结果,学习率为 1,改变学习率参数值运行相同代码的输出如下:

学习率为 1

从上图中可以看出,权重与最优值间的偏离较大,除此之外,权重值更新幅度较大,因此权重值的微小变化几乎不会影响梯度的变化,权重并不能收敛于最优值。
一般来说,学习率越低越好。这样,模型能够缓慢学习,并将权重调整为最佳值,学习率参数值通常设置在 0.00010.01 之间。

3. 学习率优化实战

我们已经了解到学习率在获得最佳权重方面起着关键作用。当学习率较小时,权重会平滑的向最优值移动,而当学习率较大时,权重会在非最优值处振荡(陷于局部最优值)。为了理解不同学习率的影响,我们将使用 Fashion MNIST 进行以下实验:

  • 在缩放后的数据集上使用较高学习率 (0.1)
  • 在缩放后的数据集上使用较低学习率 (0.00001)
  • 在未缩放的数据集上使用较低学习率 (0.001)
  • 在未缩放的数据集上使用较高学习率 (0.1)

3.1 学习率对缩放后的数据集的影响

在本节中,我们将使用不同学习率对比模型在训练和验证数据集上的准确率。

3.1.1 较高学习率

本节中,我们使用 Adam 优化器,训练过程中唯一的变化是定义 get_model() 函数时,修改优化器中的学习率,将学习率( lr )修改为 0.1。除了对 get_model() 函数进行的修改之外,其他代码都与神经网络训练一节中完全相同。修改优化器,使其学习率为 0.1 ( lr=1e-1):

def get_model():model = nn.Sequential(nn.Linear(28 * 28, 1000),nn.ReLU(),nn.Linear(1000, 10)).to(device)loss_fn = nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=1e-1)return model, loss_fn, optimizer

执行代码后,模型在训练和验证数据集上对应的准确率和损失变化如下:

准确率和损失变化

3.1.2 中等学习率

通过修改 get_model() 函数并从头开始重新训练模型,将优化器的学习修改为 0.001

def get_model():model = nn.Sequential(nn.Linear(28 * 28, 1000),nn.ReLU(),nn.Linear(1000, 10)).to(device)loss_fn = nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=1e-3)return model, loss_fn, optimizer

在以上代码中,我们修改了 lr 参数值,与训练和验证数据集对应的准确率和损失值变化如下:

准确率和损失值变化

从以上输出结果可以看出,当学习率从 0.1 降低到 0.001 时,模型性能有了大幅提升。

3.1.3 较低学习率

通过修改 get_model() 函数并从头开始重新训练模型,将优化器的学习率修改为 0.00001,并运行模型更多的 epoch (100):

def get_model():model = nn.Sequential(nn.Linear(28 * 28, 1000),nn.ReLU(),nn.Linear(1000, 10)).to(device)loss_fn = nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=1e-5)return model, loss_fn, optimizer

在以上中,我们修改了 lr 参数值,与训练和验证数据集对应的准确率和损失变化如下:

准确率和损失变化

从上图中,我们可以看到模型的学习速度相对而言慢了很多,与学习率为 0.001 时相比,需要 100epoch 模型才能达到约 89% 的准确率,而学习率为 0.001 时只需要 8epoch。此外,与较大学习率相比,当学习率较低时,训练和验证损失之间的差距要小得多。这是因为,当学习率较低时,权重更新幅度也要低得多,训练和验证损失之间的差距并不会迅速扩大。
我们已经了解了学习率对训练和验证数据集准确率的影响。在下一节中,我们将了解不同学习率的权重值在各层之间的分布变化。

3.1.4 不同学习率的模型参数分布

我们已经了解到,在较高学习率时( 0.1),模型被无法正确训练(模型欠拟合)在学习率中等( 0.001 )或低 (0.00001 )时可以得到较高的准确率。中等学习率能够快速过拟合,而较低学习率需要更长的时间才能达到与中等学习率模型相近的准确率。在本节中,我们将了解参数分布如何衡量模型过拟合和欠拟合。
在我们使用的简单模型中有四个参数组:

  • 连接输入层和隐藏层的层的权重
  • 隐藏层中的偏置值
  • 连接隐藏层和输出层的层的权重
  • 输出层中的偏置值

可以使用以下代码来观察参数的分布情况:

for ix, par in enumerate(model.parameters()):if(ix == 0):plt.subplot(141)plt.hist(par.cpu().detach().numpy().flatten())plt.title('Distribution of weights conencting input to hidden layer')elif(ix == 1):plt.subplot(142)plt.hist(par.cpu().detach().numpy().flatten())plt.title('Distribution of biases of hidden layer')elif(ix == 2):plt.subplot(143)plt.hist(par.cpu().detach().numpy().flatten())plt.title('Distribution of weights conencting hidden to output layer')elif(ix == 3):plt.subplot(144)plt.hist(par.cpu().detach().numpy().flatten())plt.title('Distribution of biases of output layer')plt.show()

使用三种不同的学习率,输出结果如下所示:

模型参数分布

在上图中,我们可以看到:

  • 当学习率较高时,与中低学习率相比,参数的分布范围大得多
  • 当参数分布范围较大时,就会发生过拟合

3.2 学习率对未缩放数据集的影响

在本节中,我们在定义数据集类时使用原始未缩放数据集:

class FMNISTDataset(Dataset):def __init__(self, x, y):x = x.float()x = x.view(-1,28*28)self.x, self.y = x, y def __getitem__(self, ix):x, y = self.x[ix], self.y[ix] return x.to(device), y.to(device)def __len__(self): return len(self.x)

使用不同学习率训练模型,准确率和损失随 epoch 的变化如下:

准确率和损失变化

在上图中可以看到,当数据集并未缩放时,学习率为 0.1 时无法训练出准确的模型,而学习率为 0.001 时准确率也会下降,当学习率非常小时( 0.00001 )时,模型同样能够学习得到较优性能,但出现了过拟合问题。我们可以通过查看网络各层的权重参数分布来理解这种情况发生的原因:

权重分布

可以看到,与较高的学习率相比,当模型学习率较低时,权重的范围相对小得多。在未缩放数据集上学习率为 0.00001 等价于在缩放数据集上学习率为 0.001 时的模型性能,这时学习率较低时权重可以以较小幅度进行修改,因为在这种情况下 梯度x学习率 是一个非常小的值。通常,学习率过低会导致训练模型需要较长时间,而学习率过高会导致模型训练变得不稳定。

小结

学习率的优化是神经网络训练中不可或缺的一环,合理地选择学习率及采用适当的调整策略,能够帮助提升模型的训练效果。本节中,我们介绍了学习率影响模型训练的原理,并通过实战展示了不同学习率对模型性能的影响。

系列链接

PyTorch深度学习实战(1)——神经网络与模型训练过程详解
PyTorch深度学习实战(2)——PyTorch基础
PyTorch深度学习实战(3)——使用PyTorch构建神经网络
PyTorch深度学习实战(4)——常用激活函数和损失函数详解
PyTorch深度学习实战(5)——计算机视觉基础
PyTorch深度学习实战(6)——神经网络性能优化技术
PyTorch深度学习实战(7)——批大小对神经网络训练的影响
PyTorch深度学习实战(8)——批归一化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/24281.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从0到1开发go-tcp框架【4实战片— — 开发MMO之玩家聊天篇】

从0到1开发go-tcp框架【实战片— — 开发MMO】 MMO(MassiveMultiplayerOnlineGame):大型多人在线游戏(多人在线网游) 1 AOI兴趣点的算法 游戏中的坐标模型: 场景相关数值计算 ● 场景大小: 250…

解密爬虫ip是如何被识别屏蔽的

在当今信息化的时代,网络爬虫已经成为许多企业、学术机构和个人不可或缺的工具。然而,随着网站安全防护的升级,爬虫ip往往容易被识别并屏蔽,给爬虫工作增加了许多困扰。在这里,作为一家专业的爬虫ip供应商,…

2023上半年手机及数码行业分析报告(京东销售数据分析)

2023年上半年,手机市场迎来复苏,同环比来看,销量销额纷纷上涨。 而数码市场中,各个热门品类表现不一。微单相机及智能手表同比去年呈现增长态势,而笔记本电脑市场则出现下滑。 基于此现状,鲸参谋发布了20…

谈一谈Python中的装饰器

1、装饰器基础介绍 1.1 何为Python中的装饰器? Python中装饰器的定义以及用途: 装饰器是一种特殊的函数,它可以接受一个函数作为参数,并返回一个新的函数。装饰器可以用来修改或增强函数的行为,而不需要修改函数本身…

JVM深入 —— JVM的体系架构

前言 能否真正理解JVM的底层实现原理是进阶Java技术的必由之路,Java通过JVM虚拟机的设计使得Java的延拓性更好,平台无关性是其同时兼顾移动端和服务器端开发的重要特性。在本篇文章中,荔枝将会仔细梳理JVM的体系架构和理论知识,希…

Dubbo+Zookeeper使用

说明:Apache Dubbo 是一款 RPC 服务开发框架,用于解决微服务架构下的服务治理与通信问题,官方提供了 Java、Golang 等多语言 SDK 实现。 本文介绍Dubbo的简单使用及一些Dubbo功能特性,注册中心使用的是ZooKeeper,可在…

驱动工作原理

驱动原理 在Linux操作系统中,硬件驱动程序中实现对硬件直接操作,而用户空间,通过通用的系统调用接口(open() 打开相应的驱动设备,ioctl()控制相应的功能等),实现对硬件操作,应用程序没有直接操作…

树的层次遍历

层次遍历简介 广度优先在面试里出现的频率非常高,整体属于简单题。而广度优先遍历又叫做层次遍历,基本过程如下: 层次遍历就是从根节点开始,先访问根节点下面一层全部元素,再访问之后的层次,类似金字塔一样…

【Uniapp 的APP热更新】

Uniapp 的APP热更新功能依赖于其打包工具 HBuilder,具体步骤如下: 1. 在 HBuilder 中构建并打包出应用程序 具体步骤: 1.点击发行,点击制作wgt包 2.根据需求修改文件储存路径和其他配置,点击确定 3.等待打包完成&a…

Rust中的高吞吐量流处理

本篇文章主要介绍了Rust中流处理的概念、方法和优化。作者不仅介绍了流处理的基本概念以及Rust中常用的流处理库,还使用这些库实现了一个流处理程序。 最后,作者介绍了如何通过测量空闲和阻塞时间来优化流处理程序的性能,并将这些内容同步至…

Android 实现账号诊断动画效果,逐条检测对应的项目

Dialog中的项目 逐条检测效果&#xff1a; 依赖库&#xff1a; implementation com.github.li-xiaojun:XPopup:2.9.19 implementation com.blankj:utilcodex:1.31.1 implementation com.github.CymChad:BaseRecyclerViewAdapterHelper:3.0.101、item_account_check.xml <…

PictureBox基本使用

作用&#xff1a;展示图片&#xff0c;同时也具有click属性&#xff0c;可用充当按钮功能。 常用属性&#xff1a; 设置图片 设置图片的填充模式 常用事件&#xff1a; 后台代码示范&#xff1a;增加点击事件 private void pictureBox1_Click(object sender, EventArgs e){//…

【CodeWhisperer】亚马逊版代码生成工具

大家好&#xff0c;我是荷逸&#xff0c;今天给大家带来的是代码生成工具【CodeWhisperer】 CodeWhisperer简介 CodeWhisperer是亚⻢逊出品的一款基于机器学习的通用代码生成器&#xff0c;可实时提供代码建议。 在编写代码时&#xff0c;它会自动根据我们现有的代码和注释生…

Java中「Future」接口详解

一、背景 在系统中&#xff0c;异步执行任务&#xff0c;是很常见的功能逻辑&#xff0c;但是在不同的场景中&#xff0c;又存在很多细节差异&#xff1b; 有的任务只强调「执行过程」&#xff0c;并不需要追溯任务自身的「执行结果」&#xff0c;这里并不是指对系统和业务产…

JDK, JRE和JVM之间的区别和联系

JDK, JRE和JVM是与Java编程语言相关的三个重要的概念&#xff0c;它们分别代表Java Development Kit&#xff08;Java开发工具包&#xff09;、Java Runtime Environment&#xff08;Java运行时环境&#xff09;和Java虚拟机&#xff08;Java Virtual Machine&#xff09;。它们…

大数据课程G2——Hbase的基本架构

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 掌握Hbase的基本架构; ⚪ 掌握Hbase的读写流程; ⚪ 掌握Hbase的设计与优化; 一、基本架构 1. HRegion 1. 在HBase中,会将一个表从行键方向上进行切分,切分成1个或者多个HRegion。 …

C#利用自定义特性以及反射,来提大型项目的开发的效率

在大型项目的开发过程中&#xff0c;需要多人协同工作&#xff0c;来加速项目完成进度。 比如一个软件有100个form&#xff0c;分给100个人来写&#xff0c;每个人完成自己的Form.cs的编写之后&#xff0c;要在Mainform调用自己写的Form。 如果按照正常的Form form1 new For…

MIT 6.824 -- MapReduce -- 01

MIT 6.824 -- MapReduce -- 01 引言抽象和实现可扩展性可用性(容错性)一致性MapReduceMap函数和Reduce函数疑问 课程b站视频地址: MIT 6.824 Distributed Systems Spring 2020 分布式系统 推荐伴读读物: 极客时间 – 大数据经典论文解读DDIA – 数据密集型应用大数据相关论文…

【具身智能】系列论文解读(CoWs on PASTURE VoxPoser Relational Pose Diffusion)

0. My Conclusion CoWs on PASTURE&#xff1a; 擅长零样本的视觉语言对象导航&#xff0c;主要解决了LLM辅助下的任务级动作执行任务VoxPoser&#xff1a; 擅长设计一些未预定义的动作轨迹&#xff0c;主要解决了LLM辅助下的动作轨迹设计任务Relational Pose Diffusion&#…

Packet Tracer - 将路由器连接到 LAN

Packet Tracer - 将路由器连接到 LAN 地址分配表 设备 接口 IP 地址 子网掩码 默认网关 R1 G0/0 192.168.10.1 255.255.255.0 N/A G0/1 192.168.11.1 255.255.255.0 N/A S0/0/0 (DCE) 209.165.200.225 255.255.255.252 N/A R2 G0/0 10.1.1.1 255.255.255…