智能优化算法应用:基于北方苍鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于北方苍鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于北方苍鹰算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.北方苍鹰算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用北方苍鹰算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.北方苍鹰算法

北方苍鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/124539198
北方苍鹰算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

北方苍鹰算法参数如下:

%% 设定北方苍鹰优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明北方苍鹰算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/241842.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nodejs微信小程序+python+PHP医疗机构药品及耗材信息管理系统-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

RT-Thread启动过程

RT-Thread启动流程 一般了解一份代码大多从启动部分开始,同样这里也采用这种方式,先寻找启动的源头。 RT-Thread支持多种平台和多种编译器,而rtthread_startup()函数是RT-Thread规定的统一启动入口。 一般执行顺序是:系统先从启…

CSS3:绘制多边形

clip-path&#xff1a;该属性使用裁剪方式创建元素的可显示区域&#xff0c;区域内的显示&#xff0c;区域外的不显示。 构建一个三角形 <div class"mybox"></div><style>.mybox {width: 100px;height: 100px;background-color: yellow;clip-path…

JavaOOP篇----第十四篇

系列文章目录 文章目录 系列文章目录前言一、Hashcode的作用二、Java的四种引用,强弱软虚三、Java创建对象有几种方式?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码…

Android可折叠设备完全指南:展开未来

Android可折叠设备完全指南&#xff1a;展开未来 探索如何使用Android Jetpack组件折叠和展开设备。 近年来&#xff0c;科技界见证了可折叠设备的革命性趋势。这些设备融合了便携性和功能性的创新特点&#xff0c;使用户能够在不同的形态之间无缝切换。在本博客中&#xff0c…

浅析海博深造

文章目录 深造作用 留学种类 选专业 择校 申请流程 申请方式 深造作用 1、个人能力提升&#xff08;学术专业、语言、新文化或新生活方式&#xff09; 2、更好的职业发展&#xff08;起点更高、结交新朋友或扩大社交圈&#xff09; 3、北京上海落户优惠 4、海外居留福…

前端问题记录

jenkins安装vue依赖报错 jenkins 安装依赖&#xff0c;报错cannot find module ‘/root/.jenkins/workspace/项目路径/node_modules/xxxx’&#xff0c;如图上 解决&#xff1a;执行 npm install vue/cli-service --unsafe-perm&#xff0c;再执行npm i

解决 MATLAB 遗传算法中 exitflg=4 的问题

一、优化问题简介 以求解下述优化问题为例&#xff1a; P 1 : min ⁡ p ∑ k 1 K p k s . t . { ∑ k 1 K R k r e q l o g ( 1 α k ∗ p k ) ≤ B b s , ∀ k ∈ K p k ≥ 0 , ∀ k ∈ K \begin{align} {P_1:}&\mathop{\min}_{\bm{p}}{ \sum\limits_{k1}^K p_k } \no…

通过 Nginx 代理实现网页内容替换

突发奇想&#xff0c;用 Nginx 代理一个网站&#xff0c;把网站的一些关键字替换掉&#xff0c;蛮有意思的。 如下图&#xff1a; 一、编译安装 Nginx 一般 Nginx 中不包含 subs_filter 文本替换的模块&#xff0c;需要自己手动编译安装&#xff0c;步骤如下。 克隆 subs_fi…

物联网产品设计,聊聊设备OTA的升级

物联网产品设计部分的OTA设备固件是一个非常重要的部分&#xff0c;能够实现升级用户服务、保障系统安全等功能。 在迅速变化和发展的物联网市场&#xff0c;新的产品需求不断涌现&#xff0c;因此对于智能硬件设备的更新需求就变得空前高涨&#xff0c;设备不再像传统设备一样…

linux循环调度执行

9.2 循环调度执行 9.2.1 简介 cron的概念和crontab是不可分割的。 ​ crontab是一个命令&#xff0c;常见于Unix和Linux的操作系统之中用于设置周期性被执行的指令。 ​ 该命令从标准输入设备读取指令&#xff0c;并将其存放于“crontab”文件中&#xff0c;以供之后读取和执…

移除石子使总数最小(LeetCode日记)

LeetCode-1962-移除石子使总数最小 题目信息: 给你一个整数数组 p i l e s piles piles &#xff0c;数组 下标从 0 0 0 开始 &#xff0c;其中 p i l e s [ i ] piles[i] piles[i] 表示第 i i i 堆石子中的石子数量。另给你一个整数 k k k &#xff0c;请你执行下述操作…

Django开发2

Django开发2 Django开发1.新建项目2.创建app3.设计表结构&#xff08;django&#xff09;4.在MySQL中生成表5.静态文件管理6.部门管理7.模板的继承8.用户管理8.1 初识Form1. views.py2.user_add.html 8.3 ModelForm&#xff08;推荐&#xff09;0. models.py1. views.py2.user_…

机器人创新实验室任务三参考文档

一、JAVA环境配置 需要在Linux里面下载并且安装java。 sudo apt-get install openjdk-17-jre-headless 打开终端并且运行指令&#xff0c;用apt下载安装java。官方用的好像是java11&#xff0c;我安装的是java17。 如果无法定位软件安装包&#xff0c;可以试试更新一下 sudo …

直接插入排序【从0-1学数据结构】

文章目录 &#x1f497; 直接插入排序Java代码C代码JavaScript代码稳定性时间复杂度空间复杂度 我们先来学习 直接插入排序, 直接排序算是所有排序中最简单的了,代码也非常好实现,尽管直接插入排序很简单,但是我们依旧不可以上来就直接写代码,一定要分析之后才开始写,这样可以提…

统计和绘图软件GraphPad Prism mac功能特点

GraphPad Prism mac是一款专业的统计和绘图软件&#xff0c;主要用于生物医学研究、实验设计和数据分析。 GraphPad Prism mac功能和特点 数据导入和整理&#xff1a;GraphPad Prism 可以导入各种数据格式&#xff0c;并提供直观的界面用于整理、编辑和管理数据。用户可以轻松…

大白鲨生成Windows木马(仅供参考不可实践)

一、学习方法 一个正确的学习方法往往比学习更为重要 方法一&#xff1a;学习技术的本质性作用 &#xff08;第一性定律&#xff09; — 帮助我们解决的问题是什么 — 产生的原因/价值 方法二&#xff1a;在工作中到底如何使用&#xff1f; 方法三&#xff1a;技术是由人…

【pynput】鼠标行为追踪并模拟

文章目录 前言基本思路安装依赖包实时鼠标捕获捕获鼠标位置捕获鼠标事件记录点击内容 效果图 利用本文内容从事的任何犯法行为和开发与本人无关&#xff0c;请理性利用技术服务大家&#xff0c;创建美好和谐的社会&#xff0c;让人们生活从繁琐中变得更加具有创造性&#xff01…

JavaScript状态模式

JavaScript状态模式 1 什么是状态模式2 使用状态模式改造电灯程序3 缺少抽象类的变通方式4 示例&#xff1a;文件上传4.1 场景描述4.2 代码过程 1 什么是状态模式 允许一个对象在其内部状态改变时改变它的行为&#xff0c;对象看起来似乎修改了它的类。 比如说这样一个场景&a…

【贪心】单源最短路径Python实现

文章目录 [toc]问题描述Dijkstra算法Dijkstra算法应用示例时间复杂性Python实现 个人主页&#xff1a;丷从心 系列专栏&#xff1a;贪心算法 问题描述 给定一个带权有向图 G ( V , E ) G (V , E) G(V,E)&#xff0c;其中每条边的权是非负实数&#xff0c;给定 V V V中的一个…