quic协议及核心源码分析

quic协议

1、网络通信时,为了确保数据不丢包,早在几十年前就发明了tcp协议!然而此一时非彼一时,随着技术进步和业务需求增多,tcp也暴露了部分比较明显的缺陷,比如:

  •  建立连接的3次握手延迟大; TLS需要至少需要2个RTT,延迟也大

  • 协议缺陷可能导致syn反射类的DDOS攻击

  • tcp协议紧耦合到了操作系统,升级需要操作系统层面改动,无法快速、大面积推广升级补丁包

  • 对头阻塞:数据被分成sequence,一旦中间的sequence丢包,后面的sequence也不会处理

  • 中转设备僵化:路由器、交换机等设备“认死理”,比如只认80、443等端口,其他端口一律丢弃

为了解决这些问题,牛逼plus的google早在10年前,也就是2012年发布了基于UDP的quic协议!为啥不基于tcp了,因为tcp有上述5条缺陷的嘛,所以干脆“另起炉灶”重新开搞!

2、正式介绍前,先看一张图:quci在右边,底层用了udp的协议;自生实现了Multistreaming、tls、拥塞控制,然后支撑了上层的http/2,所以我个人理解quic是一个夹在应用层和传输层之间的协议!

上面“数落”了tcp协议的5点不是,quic又是怎么基于udp解决这些问题的了?quic 是基于 UDP 实现的协议,而 UDP 是不可靠的面向报文的协议,这和 TCP 基于 IP 层的实现并没有什么本质上的不同,都是:

  • 底层只负责尽力而为的,以 packet 为单位的传输;

  • 上层协议实现更关键的特性,如可靠,有序,安全等。

(1)由于quic并未改造udp,而是直接使用udp,所以不需要改动现有的操作系统,也兼容了现有的网络中转设备,这些都不需要做任何改动,所以quic部署的改造成本相对较低!但是quic毕竟是新的协议,在哪部署和使用了?只有应用层了!这个和操作系统是解耦的,全靠3环的app自己想办法实现(和之前介绍的协程是不是类似了?)!google已经开源了算法,下载连接见文章末尾的参考5;PS:微软也实现了QUIC协议,名称叫MsQuic,源码在这:https://github.com/microsoft/msquic;

这里多说几句:应用层app能操作的最底层协议就是传输层了。大家在用libc库编写通信代码时可以对指定的ip地址和端口收发数据,没法改自己的mac地址吧?也没法改自己的ip地址吧?这些都是操作系统内核封装的,app的开发人员是不需要、也是没法改变的,所以站在安全防护的角度,部分大厂基于传输层自研了类似quic的通信协议,逆向时需要人工挨个分析协议字段的含义了,现成的fiddler/charles/burpsuit等https/http的抓包工具是无效的,用wireshark这类工具抓包也无法自动解析这些厂家自研的协议!

(2)TCP连接需要3次握手,tls最少需要2次RTT,两个加起来一共要耗费5个RTT,究其原因一方面是 TCP 和 TLS 分层设计导致的:分层的设计需要每个逻辑层次分别建立自己的连接状态。另一方面是 TLS 的握手阶段复杂的密钥协商机制导致的,quic又是怎么改进的了?quic建立握手的步骤如下:

  • 客户端判断本地是否已有服务器的全部配置参数(证书配置信息),如果有则直接跳转到(5),否则继续 。

  • 客户端向服务器发送 inchoate client hello(CHLO) 消息,请求服务器传输配置参数。

  • 服务器收到 CHLO,回复 rejection(REJ) 消息,其中包含服务器的部分配置参数

  • 客户端收到 REJ,提取并存储服务器配置参数,跳回到 (1) 。

  • 客户端向服务器发送 full client hello 消息,开始正式握手,消息中包括客户端选择的公开数。此时客户端根据获取的服务器配置参数和自己选择的公开数,可以计算出初始密钥 K1。

  • 服务器收到 full client hello,如果不同意连接就回复 REJ,同(3);如果同意连接,根据客户端的公开数计算出初始密钥 K1,回复 server hello(SHLO) 消息, SHLO 用初始密钥 K1 加密,并且其中包含服务器选择的一个临时公开数。

  • 客户端收到服务器的回复,如果是 REJ 则情况同(4);如果是 SHLO,则尝试用初始密钥 K1 解密,提取出临时公开数。

  • 客户端和服务器根据临时公开数和初始密钥 K1,各自基于 SHA-256 算法推导出会话密钥 K2。

  • 双方更换为使用会话密钥 K2 通信,初始密钥 K1 此时已无用,QUIC 握手过程完毕。之后会话密钥 K2 更新的流程与以上过程类似,只是数据包中的某些字段略有不同。这里为啥不继续使用key1,而是要重新生成key2来加密了?核心是为了前向安全!万一key1泄漏,之前用key1加密的数据全都被解密。所以为了前向安全,每次通信时会重新生成key2加密!

总的来说:

  • udp本身就不是面向连接的协议,所以省略了tcp 3次握手连接的耗时;直接通过事先内置的服务器参数发起通信请求;

  • 既然不是面向连接的,怎么确保所有的数据都能到达了?通过stream id和stream offset确保数据包不会丢失,接收方能收到完整的全量数据

  • 第一次用DH算法计算对称加密的密钥需要1个RTT;后续每次都用这个缓存的密钥加密,又省了一个RTT;本质上是把tcp的打招呼、握手,还有tls交换密钥的工作在1个RTT中全做了,这就是相比于tcp实现的tls效率高的根本原因!

注意:通信双方用于密钥交换的DH算法无法防止中间人攻击,所以仅通过密钥交换是无法防止被抓包的,所以还要通过证书等其他方式验证身份!x音就是通过libboringssl.so(google开源的一个openssl分支)SSL_CTX_set_custom_verify函数验证客户端是否是原来的client,而不是抓包软件!

相关视频推荐

Linux C/C++开发(后端/音视频/游戏/嵌入式/高性能网络/存储/基础架构/安全)icon-default.png?t=N7T8https://link.zhihu.com/?target=https%3A//ke.qq.com/course/417774%3FflowToken%3D1013300

需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

(3)拥塞控制:QUIC 使用可插拔的拥塞控制,相较于 TCP,它能提供更丰富的拥塞控制信息。比如对于每一个包,不管是原始包还是重传包,都带有一个新的序列号(seq),这使得 QUIC 能够区分 ACK 是重传包还是原始包,从而避免了 TCP 重传模糊的问题。QUIC 同时还带有收到数据包与发出 ACK 之间的时延信息。这些信息能够帮助更精确的计算 RTT!同时,因为quic不依赖操作系统,而是在应用层实现,所以开发人员对于quic有非常强的操控能力:完全可以根据不同的业务场景,实现和配置不同的拥塞控制算法以及参数;比如Google 提出的 BBR 拥塞控制算法与 CUBIC 是思路完全不一样的算法,在弱网和一定丢包场景,BBR 比 CUBIC 更不敏感,性能也更好;

(4)队头阻塞:TCP 为了保证可靠性,使用了基于字节序号的 Sequence Number 及 Ack 来确认消息的有序到达;一旦中间某个sequence的包丢失,哪怕是这个sequence后面的数据已经到达接收端,操作系统也不会立即把数据发给上层的应用来接受处理,而是一直等待发送端重新发送丢失的sequence包,举例如下:

应用层可以顺利读取 stream1 中的内容,但由于 stream2 中的第三个 segment 发生了丢包,TCP 为了保证数据的可靠性,需要发送端重传第 3 个 segment 才能通知应用层读取接下去的数据。所以即使 stream3、stream4 的内容已顺利抵达,应用层仍然无法读取,只能等待 stream2 中丢失的包进行重传。在弱网环境下,HTTP2 的队头阻塞问题在用户体验上极为糟糕!quic是怎么既确保数据传输可靠不丢失,又解决队头阻塞的这个问题的了?

对于数据包的传输,肯定是要编号的,否则接受方在拼接这些数据包的时候怎么知道顺序了?quic协议用Packet Number 代替了 TCP 的 Sequence Number,不同之处在于:

  • 每个 Packet Number 都严格递增,也就是说就算 Packet N 丢失了,重传的 Packet N 的 Packet Number 已经不是 N,而是一个比 N 大的值,比如Packet N+M;

  • 数据包支持乱序确认,不再要求 TCP 那样必须有序确认

当数据包 Packet N 丢失后,只要有新的已接收数据包确认,当前窗口就会继续向右滑动。待发送端获知数据包 Packet N 丢失后,会将需要重传的数据包放到待发送队列,重新编号比如数据包 Packet N+M 后重新发送给接收端,对重传数据包的处理跟发送新的数据包类似,这样就不会因为丢包重传将当前窗口阻塞在原地,从而解决了队头阻塞问题;但是问题又来了:怎么确认Package N+M就是重传PackageN的数据包了?这就涉及到quic另一个重要的特性了:多路复用!比如用户访问某个网页,这个页面有两个文件,分别是index.htm和index.js,可以同时、分别传输这两个文件!每个传输的stream都有各自的id,所以可以通过id确认是哪个stream超时丢包了!但包的Packet 编号是N+M,怎么进一步确认就是重传的Packet N包了?这就需要另一个重要的变量了:offset!怎么样,单从英语是不是就能猜到这个变量的作用了?每个数据包都有个offset字段,用于标识在stream id中的偏移!接收方完全可以根据offset来拼接收到的数据包!

总结:quic协议可以在乱序发送的情况下任然可靠不丢失,靠的就是每个数据包的offset字段;再搭配上stream id字段,接收方完全可以在乱序的情况下无误拼接收到的数据包了!

(4)除了以上通过stream id和stream offset确保数据不丢失外,quic还采用了另一个叫向前纠错 (Forward Error Correction,FEC)的校验方式:即每个数据包除了它本身的内容之外,还包括了部分其他数据包的数据,因此少量的丢包可以通过其他包的冗余数据直接组装而无需重传。向前纠错牺牲了每个数据包可以发送数据的上限,但是减少了因为丢包导致的数据重传,因为数据重传将会消耗更多的时间(包括确认数据包丢失、请求重传、等待新数据包等步骤的时间消耗);这个原理和纠删码没有本质区别!

(5)通信双方不论使用何种协议,发送的数据必须事前约定好格式,否则接受方怎么从数据包(本质就是一段字符串)中解析和提取关键的信息了?quic协议的格式如下:

数据包中除了个别报文比如 PUBLIC_RESET 和 CHLO,所有报文头部(上图红色部分)都是经过认证的(哈希散列值),报文 Body (上图绿色部分)都是经过加密的,这样只要对 QUIC 报文任何修改,接收端都能够及时发现;每个字段的含义如下:

  • Flags:用于表示 Connection ID 长度、Packet Number 长度等信息;

  • Connection ID:客户端随机选择的最大长度为64位的无符号整数,用于标识连接;如果app更换了ip地址(比如wifi和4G之间切换了),仍然可以通过这个id和服务端在0 RTT下通信!

  • QUIC Version:QUIC 协议的版本号,32 位的可选字段。如果 Public Flag & FLAG_VERSION != 0,这个字段必填。客户端设置 Public Flag 中的 Bit0 为1,并且填写期望的版本号。如果客户端期望的版本号服务端不支持,服务端设置 Public Flag 中的 Bit0 为1,并且在该字段中列出服务端支持的协议版本(0或者多个),并且该字段后不能有任何报文;

  • Packet Number:长度取决于 Public Flag 中 Bit4 及 Bit5 两位的值,最大长度 6 字节。发送端在每个普通报文中设置 Packet Number。发送端发送的第一个包的序列号是 1,随后的数据包中的序列号的都大于前一个包中的序列号;

  • Stream ID:用于标识当前数据流属于哪个资源请求,用于消除队头阻塞;

  • Offset:标识当前数据包在当前 Stream ID 中的字节偏移量,用于消除队头阻塞。

(6)为了便于理解和记忆,这里把quic的要点做了总结,如下:

3、正式因为quic有这么多优点,国内很多互联网一、二线厂商都开始采用,其中比较著名的app就是x音了!lib库中有个libsscronet.so就支持quic协议!

quic协议核心源码

quic协议最早是google提出来的,所以狗家的源码肯定是最“正宗”的!

1、quic相比tcp实现的tls,前面省略了3~4个RTT,根因就是发起连接请求时就发送自己的公钥给对方,让对方利用自己的公钥计算后续对称加密的key,这就是所谓的handshake;在libquic-master\src\net\quic\core\quic_crypto_client_stream.cc中有具体实现握手的代码,先看DoHandshakeLoop函数:

void QuicCryptoClientStream::DoHandshakeLoop(const CryptoHandshakeMessage* in) {QuicCryptoClientConfig::CachedState* cached =crypto_config_->LookupOrCreate(server_id_);QuicAsyncStatus rv = QUIC_SUCCESS;do {CHECK_NE(STATE_NONE, next_state_);const State state = next_state_;next_state_ = STATE_IDLE;rv = QUIC_SUCCESS;switch (state) {case STATE_INITIALIZE:DoInitialize(cached);break;case STATE_SEND_CHLO:DoSendCHLO(cached);return;  // return waiting to hear from server.case STATE_RECV_REJ:DoReceiveREJ(in, cached);break;case STATE_VERIFY_PROOF:rv = DoVerifyProof(cached);break;case STATE_VERIFY_PROOF_COMPLETE:DoVerifyProofComplete(cached);break;case STATE_GET_CHANNEL_ID:rv = DoGetChannelID(cached);break;case STATE_GET_CHANNEL_ID_COMPLETE:DoGetChannelIDComplete();break;case STATE_RECV_SHLO:DoReceiveSHLO(in, cached);break;case STATE_IDLE:// This means that the peer sent us a message that we weren't expecting.CloseConnectionWithDetails(QUIC_INVALID_CRYPTO_MESSAGE_TYPE,"Handshake in idle state");return;case STATE_INITIALIZE_SCUP:DoInitializeServerConfigUpdate(cached);break;case STATE_NONE:NOTREACHED();return;  // We are done.}} while (rv != QUIC_PENDING && next_state_ != STATE_NONE);
}

只要quic的状态不是pending,并且下一个状态不是NONE,就根据不同的状态调用不同的处理函数!具体发送handshake小的函数是DoSendCHLO,代码如下:

/*发送client hello消息*/
void QuicCryptoClientStream::DoSendCHLO(QuicCryptoClientConfig::CachedState* cached) {if (stateless_reject_received_) {//如果收到了server拒绝的消息// If we've gotten to this point, we've sent at least one hello// and received a stateless reject in response.  We cannot// continue to send hellos because the server has abandoned state// for this connection.  Abandon further handshakes.next_state_ = STATE_NONE;if (session()->connection()->connected()) {session()->connection()->CloseConnection(//关闭连接QUIC_CRYPTO_HANDSHAKE_STATELESS_REJECT, "stateless reject received",ConnectionCloseBehavior::SILENT_CLOSE);}return;}// Send the client hello in plaintext.//注意:这是client hello消息,没必要加密session()->connection()->SetDefaultEncryptionLevel(ENCRYPTION_NONE);encryption_established_ = false;if (num_client_hellos_ > kMaxClientHellos) {//握手消息已经发送了很多,不能再发了CloseConnectionWithDetails(QUIC_CRYPTO_TOO_MANY_REJECTS,base::StringPrintf("More than %u rejects", kMaxClientHellos).c_str());return;}num_client_hellos_++;//开始构造握手消息了CryptoHandshakeMessage out;DCHECK(session() != nullptr);DCHECK(session()->config() != nullptr);// Send all the options, regardless of whether we're sending an// inchoate or subsequent hello./*填充握手消息的各个字段*/session()->config()->ToHandshakeMessage(&out);// Send a local timestamp to the server.out.SetValue(kCTIM,session()->connection()->clock()->WallNow().ToUNIXSeconds());if (!cached->IsComplete(session()->connection()->clock()->WallNow())) {crypto_config_->FillInchoateClientHello(server_id_, session()->connection()->supported_versions().front(),cached, session()->connection()->random_generator(),/* demand_x509_proof= */ true, &crypto_negotiated_params_, &out);// Pad the inchoate client hello to fill up a packet.const QuicByteCount kFramingOverhead = 50;  // A rough estimate.const QuicByteCount max_packet_size =session()->connection()->max_packet_length();if (max_packet_size <= kFramingOverhead) {DLOG(DFATAL) << "max_packet_length (" << max_packet_size<< ") has no room for framing overhead.";CloseConnectionWithDetails(QUIC_INTERNAL_ERROR,"max_packet_size too smalll");return;}if (kClientHelloMinimumSize > max_packet_size - kFramingOverhead) {DLOG(DFATAL) << "Client hello won't fit in a single packet.";CloseConnectionWithDetails(QUIC_INTERNAL_ERROR, "CHLO too large");return;}// TODO(rch): Remove this when we remove:// FLAGS_quic_use_chlo_packet_sizeout.set_minimum_size(static_cast<size_t>(max_packet_size - kFramingOverhead));next_state_ = STATE_RECV_REJ;/*做hash签名,接收方会根据hash验证消息是否完整*/CryptoUtils::HashHandshakeMessage(out, &chlo_hash_);//发送消息SendHandshakeMessage(out);return;}// If the server nonce is empty, copy over the server nonce from a previous// SREJ, if there is one. if (FLAGS_enable_quic_stateless_reject_support &&crypto_negotiated_params_.server_nonce.empty() &&cached->has_server_nonce()) {crypto_negotiated_params_.server_nonce = cached->GetNextServerNonce();DCHECK(!crypto_negotiated_params_.server_nonce.empty());}string error_details;/*继续填充client hello消息*/QuicErrorCode error = crypto_config_->FillClientHello(server_id_, session()->connection()->connection_id(),session()->connection()->version(),session()->connection()->supported_versions().front(), cached,session()->connection()->clock()->WallNow(),//这个随机数会被server用来计算生成对称加密的keysession()->connection()->random_generator(), channel_id_key_.get(),//保存了nonce、key、token相关信息;后续对称加密的方法是CTR,需要NONCE值&crypto_negotiated_params_,&out, &error_details);if (error != QUIC_NO_ERROR) {// Flush the cached config so that, if it's bad, the server has a// chance to send us another in the future.cached->InvalidateServerConfig();CloseConnectionWithDetails(error, error_details);return;}/*继续对消息做hash,便于server验证收到的消息是否完整*/CryptoUtils::HashHandshakeMessage(out, &chlo_hash_);channel_id_sent_ = (channel_id_key_.get() != nullptr);if (cached->proof_verify_details()) {proof_handler_->OnProofVerifyDetailsAvailable(*cached->proof_verify_details());}next_state_ = STATE_RECV_SHLO;SendHandshakeMessage(out);// Be prepared to decrypt with the new server write key.session()->connection()->SetAlternativeDecrypter(ENCRYPTION_INITIAL,crypto_negotiated_params_.initial_crypters.decrypter.release(),true /* latch once used */);// Send subsequent packets under encryption on the assumption that the// server will accept the handshake.session()->connection()->SetEncrypter(ENCRYPTION_INITIAL,crypto_negotiated_params_.initial_crypters.encrypter.release());session()->connection()->SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);// TODO(ianswett): Merge ENCRYPTION_REESTABLISHED and// ENCRYPTION_FIRST_ESTABLSIHEDencryption_established_ = true;session()->OnCryptoHandshakeEvent(QuicSession::ENCRYPTION_REESTABLISHED);
}

个人觉得最核心的代码就是FillClientHello函数了,这里会生成随机数,后续server会利用这个随机数生成对称加密的key!部分通信的参数也会通过这个函数的执行保存在crypto_negotiated_params_对象中!client发送了hello包,接下来该server处理这个包了,代码在libquic-master\src\net\quic\core\quic_crypto_server_stream.cc和quic_crypto_server_config.cc中,代码如下:核心功能是生成自己的公钥,还有后续对称加密的key!

QuicErrorCode QuicCryptoServerConfig::ProcessClientHello(const ValidateClientHelloResultCallback::Result& validate_chlo_result,bool reject_only,QuicConnectionId connection_id,const IPAddress& server_ip,const IPEndPoint& client_address,QuicVersion version,const QuicVersionVector& supported_versions,bool use_stateless_rejects,QuicConnectionId server_designated_connection_id,const QuicClock* clock,QuicRandom* rand,//发送给client用于计算对称keyQuicCompressedCertsCache* compressed_certs_cache,QuicCryptoNegotiatedParameters* params,QuicCryptoProof* crypto_proof,QuicByteCount total_framing_overhead,QuicByteCount chlo_packet_size,CryptoHandshakeMessage* out,DiversificationNonce* out_diversification_nonce,string* error_details) const {DCHECK(error_details);const CryptoHandshakeMessage& client_hello =validate_chlo_result.client_hello;const ClientHelloInfo& info = validate_chlo_result.info;QuicErrorCode valid = CryptoUtils::ValidateClientHello(client_hello, version, supported_versions, error_details);if (valid != QUIC_NO_ERROR)return valid;StringPiece requested_scid;client_hello.GetStringPiece(kSCID, &requested_scid);const QuicWallTime now(clock->WallNow());scoped_refptr<Config> requested_config;scoped_refptr<Config> primary_config;{base::AutoLock locked(configs_lock_);if (!primary_config_.get()) {*error_details = "No configurations loaded";return QUIC_CRYPTO_INTERNAL_ERROR;}if (!next_config_promotion_time_.IsZero() &&next_config_promotion_time_.IsAfter(now)) {SelectNewPrimaryConfig(now);DCHECK(primary_config_.get());DCHECK_EQ(configs_.find(primary_config_->id)->second, primary_config_);}// Use the config that the client requested in order to do key-agreement.// Otherwise give it a copy of |primary_config_| to use.primary_config = crypto_proof->config;requested_config = GetConfigWithScid(requested_scid);}if (validate_chlo_result.error_code != QUIC_NO_ERROR) {*error_details = validate_chlo_result.error_details;return validate_chlo_result.error_code;}out->Clear();if (!ClientDemandsX509Proof(client_hello)) {*error_details = "Missing or invalid PDMD";return QUIC_UNSUPPORTED_PROOF_DEMAND;}DCHECK(proof_source_.get());string chlo_hash;CryptoUtils::HashHandshakeMessage(client_hello, &chlo_hash);// No need to get a new proof if one was already generated.if (!crypto_proof->chain &&!proof_source_->GetProof(server_ip, info.sni.as_string(),primary_config->serialized, version, chlo_hash,&crypto_proof->chain, &crypto_proof->signature,&crypto_proof->cert_sct)) {return QUIC_HANDSHAKE_FAILED;}StringPiece cert_sct;if (client_hello.GetStringPiece(kCertificateSCTTag, &cert_sct) &&cert_sct.empty()) {params->sct_supported_by_client = true;}if (!info.reject_reasons.empty() || !requested_config.get()) {BuildRejection(version, clock->WallNow(), *primary_config, client_hello,info, validate_chlo_result.cached_network_params,use_stateless_rejects, server_designated_connection_id, rand,compressed_certs_cache, params, *crypto_proof,total_framing_overhead, chlo_packet_size, out);return QUIC_NO_ERROR;}if (reject_only) {return QUIC_NO_ERROR;}const QuicTag* their_aeads;const QuicTag* their_key_exchanges;size_t num_their_aeads, num_their_key_exchanges;if (client_hello.GetTaglist(kAEAD, &their_aeads, &num_their_aeads) !=QUIC_NO_ERROR ||client_hello.GetTaglist(kKEXS, &their_key_exchanges,&num_their_key_exchanges) != QUIC_NO_ERROR ||num_their_aeads != 1 || num_their_key_exchanges != 1) {*error_details = "Missing or invalid AEAD or KEXS";return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER;}size_t key_exchange_index;if (!QuicUtils::FindMutualTag(requested_config->aead, their_aeads,num_their_aeads, QuicUtils::LOCAL_PRIORITY,&params->aead, nullptr) ||!QuicUtils::FindMutualTag(requested_config->kexs, their_key_exchanges,num_their_key_exchanges,QuicUtils::LOCAL_PRIORITY,&params->key_exchange, &key_exchange_index)) {*error_details = "Unsupported AEAD or KEXS";return QUIC_CRYPTO_NO_SUPPORT;}if (!requested_config->tb_key_params.empty()) {const QuicTag* their_tbkps;size_t num_their_tbkps;switch (client_hello.GetTaglist(kTBKP, &their_tbkps, &num_their_tbkps)) {case QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND:break;case QUIC_NO_ERROR:if (QuicUtils::FindMutualTag(requested_config->tb_key_params, their_tbkps, num_their_tbkps,QuicUtils::LOCAL_PRIORITY, &params->token_binding_key_param,nullptr)) {break;}default:*error_details = "Invalid Token Binding key parameter";return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER;}}StringPiece public_value;/*提取client hello数据包发送的公钥,server要用来生成对称加密的key*/if (!client_hello.GetStringPiece(kPUBS, &public_value)) {*error_details = "Missing public value";return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER;}const KeyExchange* key_exchange =requested_config->key_exchanges[key_exchange_index];if (!key_exchange->CalculateSharedKey(public_value,&params->initial_premaster_secret)) {*error_details = "Invalid public value";return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER;}if (!info.sni.empty()) {std::unique_ptr<char[]> sni_tmp(new char[info.sni.length() + 1]);memcpy(sni_tmp.get(), info.sni.data(), info.sni.length());sni_tmp[info.sni.length()] = 0;params->sni = CryptoUtils::NormalizeHostname(sni_tmp.get());}string hkdf_suffix;//client hello消息序列化,便于提取?const QuicData& client_hello_serialized = client_hello.GetSerialized();/*根据一个原始密钥材料,用hkdf算法推导出指定长度的密钥;这里明显是要根据client hello的数据生成对称加密的密钥了*/hkdf_suffix.reserve(sizeof(connection_id) + client_hello_serialized.length() +requested_config->serialized.size());hkdf_suffix.append(reinterpret_cast<char*>(&connection_id),sizeof(connection_id));hkdf_suffix.append(client_hello_serialized.data(),client_hello_serialized.length());hkdf_suffix.append(requested_config->serialized);DCHECK(proof_source_.get());if (crypto_proof->chain->certs.empty()) {*error_details = "Failed to get certs";return QUIC_CRYPTO_INTERNAL_ERROR;}hkdf_suffix.append(crypto_proof->chain->certs.at(0));StringPiece cetv_ciphertext;if (requested_config->channel_id_enabled &&client_hello.GetStringPiece(kCETV, &cetv_ciphertext)) {CryptoHandshakeMessage client_hello_copy(client_hello);client_hello_copy.Erase(kCETV);client_hello_copy.Erase(kPAD);const QuicData& client_hello_copy_serialized =client_hello_copy.GetSerialized();string hkdf_input;hkdf_input.append(QuicCryptoConfig::kCETVLabel,strlen(QuicCryptoConfig::kCETVLabel) + 1);hkdf_input.append(reinterpret_cast<char*>(&connection_id),sizeof(connection_id));hkdf_input.append(client_hello_copy_serialized.data(),client_hello_copy_serialized.length());hkdf_input.append(requested_config->serialized);CrypterPair crypters;if (!CryptoUtils::DeriveKeys(params->initial_premaster_secret, params->aead,info.client_nonce, info.server_nonce,hkdf_input, Perspective::IS_SERVER,CryptoUtils::Diversification::Never(),&crypters, nullptr /* subkey secret */)) {*error_details = "Symmetric key setup failed";return QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED;}char plaintext[kMaxPacketSize];size_t plaintext_length = 0;const bool success = crypters.decrypter->DecryptPacket(kDefaultPathId, 0 /* packet number */,StringPiece() /* associated data */, cetv_ciphertext, plaintext,&plaintext_length, kMaxPacketSize);if (!success) {*error_details = "CETV decryption failure";return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER;}std::unique_ptr<CryptoHandshakeMessage> cetv(CryptoFramer::ParseMessage(StringPiece(plaintext, plaintext_length)));if (!cetv.get()) {*error_details = "CETV parse error";return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER;}StringPiece key, signature;if (cetv->GetStringPiece(kCIDK, &key) &&cetv->GetStringPiece(kCIDS, &signature)) {if (!ChannelIDVerifier::Verify(key, hkdf_input, signature)) {*error_details = "ChannelID signature failure";return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER;}params->channel_id = key.as_string();}}string hkdf_input;size_t label_len = strlen(QuicCryptoConfig::kInitialLabel) + 1;hkdf_input.reserve(label_len + hkdf_suffix.size());hkdf_input.append(QuicCryptoConfig::kInitialLabel, label_len);hkdf_input.append(hkdf_suffix);string* subkey_secret = &params->initial_subkey_secret;CryptoUtils::Diversification diversification =CryptoUtils::Diversification::Never();if (version > QUIC_VERSION_32) {rand->RandBytes(out_diversification_nonce->data(),out_diversification_nonce->size());diversification =CryptoUtils::Diversification::Now(out_diversification_nonce);}if (!CryptoUtils::DeriveKeys(params->initial_premaster_secret, params->aead,info.client_nonce, info.server_nonce, hkdf_input,Perspective::IS_SERVER, diversification,&params->initial_crypters, subkey_secret)) {*error_details = "Symmetric key setup failed";return QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED;}string forward_secure_public_value;if (ephemeral_key_source_.get()) {params->forward_secure_premaster_secret =ephemeral_key_source_->CalculateForwardSecureKey(key_exchange, rand, clock->ApproximateNow(), public_value,&forward_secure_public_value);} else {std::unique_ptr<KeyExchange> forward_secure_key_exchange(key_exchange->NewKeyPair(rand));forward_secure_public_value =forward_secure_key_exchange->public_value().as_string();/*生成共享密钥*/if (!forward_secure_key_exchange->CalculateSharedKey(public_value, &params->forward_secure_premaster_secret)) {*error_details = "Invalid public value";return QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER;}}string forward_secure_hkdf_input;label_len = strlen(QuicCryptoConfig::kForwardSecureLabel) + 1;forward_secure_hkdf_input.reserve(label_len + hkdf_suffix.size());forward_secure_hkdf_input.append(QuicCryptoConfig::kForwardSecureLabel,label_len);forward_secure_hkdf_input.append(hkdf_suffix);string shlo_nonce;shlo_nonce = NewServerNonce(rand, info.now);out->SetStringPiece(kServerNonceTag, shlo_nonce);/*生成密钥*/if (!CryptoUtils::DeriveKeys(params->forward_secure_premaster_secret, params->aead,info.client_nonce,shlo_nonce.empty() ? info.server_nonce : shlo_nonce,forward_secure_hkdf_input, Perspective::IS_SERVER,CryptoUtils::Diversification::Never(),&params->forward_secure_crypters, &params->subkey_secret)) {*error_details = "Symmetric key setup failed";return QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED;}out->set_tag(kSHLO);QuicTagVector supported_version_tags;for (size_t i = 0; i < supported_versions.size(); ++i) {supported_version_tags.push_back(QuicVersionToQuicTag(supported_versions[i]));}out->SetVector(kVER, supported_version_tags);out->SetStringPiece(kSourceAddressTokenTag,NewSourceAddressToken(*requested_config.get(), info.source_address_tokens,client_address.address(), rand, info.now, nullptr));QuicSocketAddressCoder address_coder(client_address);out->SetStringPiece(kCADR, address_coder.Encode());/*server hello包中设置server的公钥,后续client会利用这个生成对称加密的key*/out->SetStringPiece(kPUBS, forward_secure_public_value);return QUIC_NO_ERROR;
}

这里用了不同的方法来生成对称加密的key。这里以椭圆曲线为例,计算对称加密key的代码如下:这是直接调用了openssl/curve25519.h的接口计算出来的。一旦双方都生成了对称密钥,后续就可以通过对称加密通信了!

bool Curve25519KeyExchange::CalculateSharedKey(StringPiece peer_public_value,string* out_result) const {if (peer_public_value.size() != crypto::curve25519::kBytes) {return false;}uint8_t result[crypto::curve25519::kBytes];if (!crypto::curve25519::ScalarMult(private_key_,reinterpret_cast<const uint8_t*>(peer_public_value.data()), result)) {return false;}out_result->assign(reinterpret_cast<char*>(result), sizeof(result));return true;
}
bool ScalarMult(const uint8_t* private_key,const uint8_t* peer_public_key,uint8_t* shared_key) {return !!X25519(shared_key, private_key, peer_public_key);
}

通信时给packet加密的方法:

bool AeadBaseEncrypter::EncryptPacket(QuicPathId path_id,QuicPacketNumber packet_number,StringPiece associated_data,StringPiece plaintext,char* output,size_t* output_length,size_t max_output_length) {size_t ciphertext_size = GetCiphertextSize(plaintext.length());if (max_output_length < ciphertext_size) {return false;}// TODO(ianswett): Introduce a check to ensure that we don't encrypt with the// same packet number twice.const size_t nonce_size = nonce_prefix_size_ + sizeof(packet_number);ALIGNAS(4) char nonce_buffer[kMaxNonceSize];memcpy(nonce_buffer, nonce_prefix_, nonce_prefix_size_);uint64_t path_id_packet_number =QuicUtils::PackPathIdAndPacketNumber(path_id, packet_number);memcpy(nonce_buffer + nonce_prefix_size_, &path_id_packet_number,sizeof(path_id_packet_number));/*这里用nonce给明文加密*/if (!Encrypt(StringPiece(nonce_buffer, nonce_size), associated_data,plaintext, reinterpret_cast<unsigned char*>(output))) {return false;}*output_length = ciphertext_size;return true;
}

最后,server hello消息是从这里发出去的,并且在某些情况下server hello已经用server新生成的key加密了,如下:

void QuicCryptoServerStream::FinishProcessingHandshakeMessage(const ValidateClientHelloResultCallback::Result& result,std::unique_ptr<ProofSource::Details> details) {const CryptoHandshakeMessage& message = result.client_hello;// Clear the callback that got us here.DCHECK(validate_client_hello_cb_ != nullptr);validate_client_hello_cb_ = nullptr;if (use_stateless_rejects_if_peer_supported_) {peer_supports_stateless_rejects_ = DoesPeerSupportStatelessRejects(message);}CryptoHandshakeMessage reply;DiversificationNonce diversification_nonce;string error_details;QuicErrorCode error = /*server处理client的hello消息:重点是生成对称加密key、自己的公钥和nonce同时生成给client回复的消息*/ProcessClientHello(result, std::move(details), &reply,&diversification_nonce, &error_details);if (error != QUIC_NO_ERROR) {CloseConnectionWithDetails(error, error_details);return;}if (reply.tag() != kSHLO) {if (reply.tag() == kSREJ) {DCHECK(use_stateless_rejects_if_peer_supported_);DCHECK(peer_supports_stateless_rejects_);// Before sending the SREJ, cause the connection to save crypto packets// so that they can be added to the time wait list manager and// retransmitted.session()->connection()->EnableSavingCryptoPackets();}SendHandshakeMessage(reply);//给client发server helloif (reply.tag() == kSREJ) {DCHECK(use_stateless_rejects_if_peer_supported_);DCHECK(peer_supports_stateless_rejects_);DCHECK(!handshake_confirmed());DVLOG(1) << "Closing connection "<< session()->connection()->connection_id()<< " because of a stateless reject.";session()->connection()->CloseConnection(QUIC_CRYPTO_HANDSHAKE_STATELESS_REJECT, "stateless reject",ConnectionCloseBehavior::SILENT_CLOSE);}return;}// If we are returning a SHLO then we accepted the handshake.  Now// process the negotiated configuration options as part of the// session config.//代码到这里已经给client发送了client hello,表示server已经准备好接受数据了//这里保存一些双方协商好的通信配置QuicConfig* config = session()->config();OverrideQuicConfigDefaults(config);error = config->ProcessPeerHello(message, CLIENT, &error_details);if (error != QUIC_NO_ERROR) {CloseConnectionWithDetails(error, error_details);return;}session()->OnConfigNegotiated();config->ToHandshakeMessage(&reply);// Receiving a full CHLO implies the client is prepared to decrypt with// the new server write key.  We can start to encrypt with the new server// write key. 可以开始用服务端新生成的key解密数据了//// NOTE: the SHLO will be encrypted with the new server write key./*既然在server已经生成了对称加密的key,这里可以用这个key加密server hello消息*/session()->connection()->SetEncrypter(ENCRYPTION_INITIAL,crypto_negotiated_params_.initial_crypters.encrypter.release());session()->connection()->SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);// Set the decrypter immediately so that we no longer accept unencrypted// packets.session()->connection()->SetDecrypter(ENCRYPTION_INITIAL,crypto_negotiated_params_.initial_crypters.decrypter.release());if (version() > QUIC_VERSION_32) {session()->connection()->SetDiversificationNonce(diversification_nonce);}SendHandshakeMessage(reply);//发送server hellosession()->connection()->SetEncrypter(ENCRYPTION_FORWARD_SECURE,crypto_negotiated_params_.forward_secure_crypters.encrypter.release());session()->connection()->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);session()->connection()->SetAlternativeDecrypter(ENCRYPTION_FORWARD_SECURE,crypto_negotiated_params_.forward_secure_crypters.decrypter.release(),false /* don't latch */);encryption_established_ = true;handshake_confirmed_ = true;session()->OnCryptoHandshakeEvent(QuicSession::HANDSHAKE_CONFIRMED);
}

(2)为了防止tcp的队头阻塞,quic在前面丢包的情况下任然继续发包,丢的包用新的packet number重新发,怎么区别这个新包是以往丢包的重发了?核心是每个包都有stream id和stream offset字段,根据这两个字段定位包的位置,而不是packet number。整个包结构定义的类在这里:

struct NET_EXPORT_PRIVATE QuicStreamFrame {QuicStreamFrame();QuicStreamFrame(QuicStreamId stream_id,bool fin,QuicStreamOffset offset,base::StringPiece data);QuicStreamFrame(QuicStreamId stream_id,bool fin,QuicStreamOffset offset,QuicPacketLength data_length,UniqueStreamBuffer buffer);~QuicStreamFrame();NET_EXPORT_PRIVATE friend std::ostream& operator<<(std::ostream& os,const QuicStreamFrame& s);QuicStreamId stream_id;bool fin;QuicPacketLength data_length;const char* data_buffer;QuicStreamOffset offset;  // Location of this data in the stream.// nullptr when the QuicStreamFrame is received, and non-null when sent.UniqueStreamBuffer buffer;private:QuicStreamFrame(QuicStreamId stream_id,bool fin,QuicStreamOffset offset,const char* data_buffer,QuicPacketLength data_length,UniqueStreamBuffer buffer);DISALLOW_COPY_AND_ASSIGN(QuicStreamFrame);
};

收到后自然要把payload取出来拼接成完整的数据,stream id和stream offset必不可少,拼接和处理的逻辑在这里:里面涉及到很多duplicate冗余去重的动作,都是依据offset来判断的!

QuicErrorCode QuicStreamSequencerBuffer::OnStreamData(QuicStreamOffset starting_offset,base::StringPiece data,QuicTime timestamp,size_t* const bytes_buffered,std::string* error_details) {*bytes_buffered = 0;QuicStreamOffset offset = starting_offset;size_t size = data.size();if (size == 0) {*error_details = "Received empty stream frame without FIN.";return QUIC_EMPTY_STREAM_FRAME_NO_FIN;}// Find the first gap not ending before |offset|. This gap maybe the gap to// fill if the arriving frame doesn't overlaps with previous ones.std::list<Gap>::iterator current_gap = gaps_.begin();while (current_gap != gaps_.end() && current_gap->end_offset <= offset) {++current_gap;}DCHECK(current_gap != gaps_.end());// "duplication": might duplicate with data alread filled,but also might// overlap across different base::StringPiece objects already written.// In both cases, don't write the data,// and allow the caller of this method to handle the result.if (offset < current_gap->begin_offset &&offset + size <= current_gap->begin_offset) {DVLOG(1) << "Duplicated data at offset: " << offset << " length: " << size;return QUIC_NO_ERROR;}if (offset < current_gap->begin_offset &&offset + size > current_gap->begin_offset) {// Beginning of new data overlaps data before current gap.*error_details =string("Beginning of received data overlaps with buffered data.\n") +"New frame range " + RangeDebugString(offset, offset + size) +" with first 128 bytes: " +string(data.data(), data.length() < 128 ? data.length() : 128) +"\nCurrently received frames: " + ReceivedFramesDebugString() +"\nCurrent gaps: " + GapsDebugString();return QUIC_OVERLAPPING_STREAM_DATA;}if (offset + size > current_gap->end_offset) {// End of new data overlaps with data after current gap.*error_details =string("End of received data overlaps with buffered data.\n") +"New frame range " + RangeDebugString(offset, offset + size) +" with first 128 bytes: " +string(data.data(), data.length() < 128 ? data.length() : 128) +"\nCurrently received frames: " + ReceivedFramesDebugString() +"\nCurrent gaps: " + GapsDebugString();return QUIC_OVERLAPPING_STREAM_DATA;}// Write beyond the current range this buffer is covering.if (offset + size > total_bytes_read_ + max_buffer_capacity_bytes_) {*error_details = "Received data beyond available range.";return QUIC_INTERNAL_ERROR;}if (current_gap->begin_offset != starting_offset &&current_gap->end_offset != starting_offset + data.length() &&gaps_.size() >= kMaxNumGapsAllowed) {// This frame is going to create one more gap which exceeds max number of// gaps allowed. Stop processing.*error_details = "Too many gaps created for this stream.";return QUIC_TOO_MANY_FRAME_GAPS;}size_t total_written = 0;size_t source_remaining = size;const char* source = data.data();// Write data block by block. If corresponding block has not created yet,// create it first.// Stop when all data are written or reaches the logical end of the buffer.while (source_remaining > 0) {const size_t write_block_num = GetBlockIndex(offset);const size_t write_block_offset = GetInBlockOffset(offset);DCHECK_GT(blocks_count_, write_block_num);size_t block_capacity = GetBlockCapacity(write_block_num);size_t bytes_avail = block_capacity - write_block_offset;// If this write meets the upper boundary of the buffer,// reduce the available free bytes.if (offset + bytes_avail > total_bytes_read_ + max_buffer_capacity_bytes_) {bytes_avail = total_bytes_read_ + max_buffer_capacity_bytes_ - offset;}if (reduce_sequencer_buffer_memory_life_time_ && blocks_ == nullptr) {blocks_.reset(new BufferBlock*[blocks_count_]());for (size_t i = 0; i < blocks_count_; ++i) {blocks_[i] = nullptr;}}if (blocks_[write_block_num] == nullptr) {// TODO(danzh): Investigate if using a freelist would improve performance.// Same as RetireBlock().blocks_[write_block_num] = new BufferBlock();}const size_t bytes_to_copy = min<size_t>(bytes_avail, source_remaining);char* dest = blocks_[write_block_num]->buffer + write_block_offset;DVLOG(1) << "Write at offset: " << offset << " length: " << bytes_to_copy;memcpy(dest, source, bytes_to_copy);source += bytes_to_copy;source_remaining -= bytes_to_copy;offset += bytes_to_copy;total_written += bytes_to_copy;}DCHECK_GT(total_written, 0u);*bytes_buffered = total_written;UpdateGapList(current_gap, starting_offset, total_written);frame_arrival_time_map_.insert(std::make_pair(starting_offset, FrameInfo(size, timestamp)));num_bytes_buffered_ += total_written;return QUIC_NO_ERROR;
}

(3)为了精准测量RTT,quic协议的数据包编号都是单调递增的,哪怕是重发的包的编号都是增加的,这部分的控制代码在WritePacket函数里面:函数开头就判断数据包编号。一旦发现编号比最后一次发送包的编号还小,说明出错了,这时就关闭连接退出函数!

bool QuicConnection::WritePacket(SerializedPacket* packet) {/*如果数据包号比最后一个发送包的号还小,说明顺序错了,直接关闭连接*/if (packet->packet_number <sent_packet_manager_->GetLargestSentPacket(packet->path_id)) {QUIC_BUG << "Attempt to write packet:" << packet->packet_number << " after:"<< sent_packet_manager_->GetLargestSentPacket(packet->path_id);CloseConnection(QUIC_INTERNAL_ERROR, "Packet written out of order.",ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);return true;}/*没有连接、没有加密的包是不能发的*/if (ShouldDiscardPacket(*packet)) {++stats_.packets_discarded;return true;}.........................  
}

(4)为啥quic协议要基于udp了?应用层现成的协议很复杂,改造的难度大!传输层只有tcp和udp两种协议;tcp的缺点不再赘述,udp的优点就是简单,只提供最原始的发包功能,完全不管对方有没有收到,quic就是利用了udp这种最基础的send package发包能力,在此之上完成了tls(保证数据安全)、拥塞控制(保证链路被塞满)、多路复用(保证数据不丢失)等应用层的功能!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/240934.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c语言:文件操作(2),认识各种文件操作函数

fgets 作用 fgets是C语言标准库中用于从文件中读取字符串的函数。 fgets函数从指定的文件流stream中读取最多n-1个字符&#xff0c;或者直到遇到换行符&#xff08;包括换行符在内&#xff09;&#xff0c;并将其存储到以str指向的字符数组中。读取的字符串会以null字符\0结…

12.23C语言 指针

& 地址运算符&#xff0c;用于取地址 /*注释内容*/ //注释一行 *的意思&#xff1a;1.算术运算符 2.用于指针声明int *ptr;表示这个变量是一个指针3.数组元素访问&#xff1a;在数组名后面使用 * 可以表示数组的起始地址。例如&#xff1a; int arr[5] {1, 2, 3, 4, 5…

05. Springboot admin集成Actuator(一)

目录 1、前言 2、Actuator监控端点 2.1、健康检查 2.2、信息端点 2.3、环境信息 2.4、度量指标 2.5、日志文件查看 2.6、追踪信息 2.7、Beans信息 2.8、Mappings信息 3、快速使用 2.1、添加依赖 2.2、添加配置文件 2.3、启动程序 4、自定义端点Endpoint 5、自定…

干洗店预约上门取货小程序与互联网洗鞋店小程序开发制作功能方案

干洗店预约上门取货小程序与互联网洗鞋店小程序开发制作功能方案 一、洗衣洗鞋店小程序功能 1. 预约订单&#xff1a;忙碌时&#xff0c;您可以使用预约功能轻松获取洗衣服务。 2. 在线下单&#xff1a;用户可直接通过小程序在线下单&#xff0c;享受专人上门取货与配送服务。…

Unity2017升级到Unity2018在Window7上输出空异常错误问题

Unity2017升级到Unity2018在Window7上输出空异常错误问题 一、环境Window7二、现象Unity报空异常&#xff08;.NET 4.x Equivalent&#xff09;三、日志四、解决方案第一种解决方案第二种解决方案 一、环境Window7 二、现象Unity报空异常&#xff08;.NET 4.x Equivalent&…

小白入门之安装NodeJS

重生之我在大四学JAVA 第五章 安装NodeJS 如果你在购买我闲鱼的程序&#xff0c;请尽量使用node14版本 修改安装路径 接着傻瓜式NEXT 测试是否安装成功 如果上面没提示版本号&#xff0c;就按照前两章配置环境变量步骤配置下环境变量 设置镜像地址 npm config set re…

基于遗传算法特征选择及单层感知机模型的IMDB电影评论文本分类案例

基于遗传算法特征选择及单层感知机模型的IMDB电影评论文本分类案例 1.数据载入及处理2.感知机模型建立3.模型训练4.遗传算法进行特征选择注意 5.联系我们 1.数据载入及处理 import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dat…

【Flutter】黑白图片

一、将图片处理成黑白图片 //第一种方法CachedNetworkImage(imageUrl: imageUrl,width: 80,height: 80,fit: BoxFit.cover,color: Colors.black,//目标颜色colorBlendMode: BlendMode.color,//颜色混合模式)//第二种方法ShaderMask(shaderCallback: (Rect bounds) {return Lin…

基于多反应堆的高并发服务器【C/C++/Reactor】(中)Channel 模块的实现

在这篇文章中虽然实现了能够和多客户端建立连接&#xff0c;并且同时和多个客户端进行通信。 基于多反应堆的高并发服务器【C/C/Reactor】&#xff08;上&#xff09;-CSDN博客https://blog.csdn.net/weixin_41987016/article/details/135141316?spm1001.2014.3001.5501但是有…

抖店怎么做?新手又该如何从头开始运营?

我是电商珠珠 抖店发展了将近4年时间&#xff0c;一直都备受关注。第一是因为他的门槛低&#xff0c;第二是他的玩法和传统有所差别&#xff0c;第三就是流量来源渠道比较广。 这一年所立的flag不到最后关头绝对不能倒&#xff0c;所以就会有很多人奔着这几点来尝试做店&…

MATLAB遗传算法工具箱的三种使用方法

MATLAB中有三种调用遗传算法的方式&#xff1a; 一、遗传算法的开源文件 下载“gatbx”压缩包文件&#xff0c;解压后&#xff0c;里面有多个.m文件&#xff0c;可以看到这些文件的编辑日期都是1998年&#xff0c;很古老了。 这些文件包含了遗传算法的基础操作&#xff0c;包含…

ebay倒计时活动攻略,ebay倒计时活动怎么做的?——站斧浏览器

ebay倒计时活动攻略 在ebay上做倒计时活动时&#xff0c;可以参考以下攻略&#xff1a; 制定合理的ebay优惠方案。可以根据消费者的需求和购买习惯&#xff0c;制定不同的优惠方案&#xff0c;例如满减、折扣、赠品等。同时&#xff0c;要保证优惠方案的真实性和公平性&#…

wordpress主题modown v8.81+erphpdown v16.0无限制无授权开心版

修复bug&#xff08;v8.81 2023.03.07&#xff09; 新增文章页正文下面常见问题手风琴模块&#xff0c;可设置显示文章的更新日期而不是发布日期&#xff0c;首页幻灯片支持指定文章、支持一个大图4个小图显示&#xff0c;grid网格列表支持显示简介&#xff0c;前台个人中心里显…

Qt 多线程用法

文章目录 开发平台QThread 类 moveToThreadQtConcurrent::run QFutureWatcherQThreadPool QRunnable 开发平台 项目说明OSwin10 x64Qt6.6compilermsvc2022构建工具cmake QThread 类 moveToThread 写一个简单的例子吧,比较容易理解,方便入门. 也可以看出这种方式,对于线程…

如何使用 Selenium 实现自动化操作?

本篇咱们来谈谈Selenium自动化脚本是如何工作的&#xff0c;以及如何实现一个简单的自动化示例&#xff1b; 一、关于Selenium 1.1、为什么选择它作为web自动化的测试工具&#xff1f; 选择Selenium作为web自动化测试工具的原因&#xff08;面试也许会问&#xff09;&#xff…

NiNNet

目录 一、网络介绍 1、全连接层存在的问题 2、NiN的解决方案(NiN块) 3、NiN架构 4、总结 二、代码实现 1、定义NiN卷积块 2、NiN模型 3、训练模型 一、网络介绍 NiN&#xff08;Network in Network&#xff09;是一种用于图像识别任务的卷积神经网络模型。它由谷歌研究…

【电路笔记】-串联电容器

串联电容器 文章目录 串联电容器1、概述2、示例13、示例34、总结 当电容器以菊花链方式连接在一条线上时&#xff0c;它们就串联在一起。 1、概述 对于串联电容器&#xff0c;流过电容器的充电电流 ( i C i_C iC​ ) 对于所有电容器来说都是相同的&#xff0c;因为它只有一条…

matlab实践(十一):导弹追踪

1.题目 a9.94,x062.06 2.方程 我们有&#xff1a; ( d x d t ) 2 ( d y d t ) 2 w 2 (\frac{\mathrm d\mathrm x}{\mathrm d\mathrm t})^2(\frac{\mathrm d\mathrm y}{\mathrm d\mathrm t})^2\mathrm w^2 (dtdx​)2(dtdy​)2w2 还有导弹始终指向船 ( d x d t d y d t ) …

【快速开发】使用SvelteKit

自我介绍 做一个简单介绍&#xff0c;酒架年近48 &#xff0c;有20多年IT工作经历&#xff0c;目前在一家500强做企业架构&#xff0e;因为工作需要&#xff0c;另外也因为兴趣涉猎比较广&#xff0c;为了自己学习建立了三个博客&#xff0c;分别是【全球IT瞭望】&#xff0c;【…

【Mode Management】CanSM详细介绍

目录 1. Introduction and functional overview 2.Dependencies to other modules 3.Functional specification 3.1General requirements 3.2State machine for each CAN network 3.2.1Trigger: PowerOn 3.2.2Trigger: CanSM_Init 3.2.3 Trigger: CanSM_DeInit 3.2.4 …