时间序列分析

常用数据集

在这里插入图片描述

2.monash数据集
官网链接
我们的存储库包含30个数据集,包括公开可用的时间序列数据集(不同格式)和由我们管理的数据集。

DatasetDomainNo: of SeriesMin. LengthMax. LengthCompetitionMultivariateDownloadSource
M1Multiple100115150YesNoYearly Quarterly Monthly YearlyAthanasopoulos et al., 2011
M3Multiple300320144YesNoQuarterly Monthly OtherMakridakis and Hibon, 2000
M4Multiple100000199933YesNoYearly Quarterly Monthly Weekly Daily HourlyMakridakis et al., 2020
TourismTourism131111333YesNoYearly Quarterly MonthlyAthanasopoulos et al., 2011
CIF 2016Banking7234120YesNoMonthlyStepnicka and Burda, 2017
London Smart MetersEnergy556028839648NoNoW Missing W/O MissingJean-Michel, 2019
Aus. Electricity DemandEnergy5230736232272NoNoHalf HourlyCurated by us
Wind FarmsEnergy3396345527040NoNoW Missing W/O MissingCurated by us
DominickSales11570428393NoNoWeeklyJames M. Kilts Center, 2020
BitcoinEconomic1826594581NoNoW Missing W/O MissingCurated by us
Pedestrian CountsTransport6657696424NoNoHourlyCity of Melbourne, 2020
Vehicle TripsTransport32970243NoNoW Missing W/O Missingfivethirtyeight, 2015
KDD Cup 2018Nature270950410920YesNoW Missing W/O MissingKDD Cup, 2018
WeatherNature3010133265981NoNoDailySparks et al., 2020
NN5Banking111791791YesYesDaily W Missing Daily W/O Missing WeeklyBen Taieb et al., 2012
Web TrafficWeb145063803803YesYesDaily W Missing Daily W/O Missing WeeklyGoogle, 2017
SolarEnergy1375256052560NoYes10 Minutes WeeklySolar, 2020
ElectricityEnergy3212630426304NoYesHourly WeeklyUCI, 2020
CarPartsSales26745151NoYesW Missing W/O Missing
FRED-MDEconomic107728728NoYesMonthlyMcCracken and Ng, 2016
San Francisco TrafficTransport8621754417544NoYesHourly WeeklyCaltrans, 2020
RideshareTransport2304541541NoYesW Missing W/O MissingCurated by us
HospitalHealth7678484NoYesMonthlyHyndman, 2015
COVID DeathsNature266212212NoYesDailyJohns Hopkins University, 2020
Temperature RainNature32072725725NoYesW Missing W/O MissingCurated by us
SunspotNature17393173931NoNoW Missing W/O MissingSunspot, 2015
Saugeen River FlowNature12374123741NoNoDailyMcLeod and Gweon, 2013
US BirthsNature173057305NoNoDailyPruim et al., 2020
Solar PowerEnergy173972227397222NoNo4 SecondsCurated by us
Wind PowerEnergy173971477397147NoNo4 SecondsCurated by us

常用指标

MSE(mean square error)均方误差
RMSE(root mean square error) 均方根误差
MAE(mean absolute error) 平均绝对误差
MAPE(mean absolute percentage error) 平均绝对百分比误差
SMAPE(Symmetric Mean Absolute Percentage Error) 对称平均绝对百分比误差

对比:先对比有平方操作和没有平方操作的,平方操作会放大单个点的误差,对误差的惩罚更大,因此有平方操作的对异常点更加明显,没有平方的操作对所有误差一视同仁,对异常点不敏感。

MSE和RMSE: RMSE 的值可以更直观地解释为与目标变量相同单位的标准差。这使得 RMSE 更容易理解,因为它具有与数据相同的度量单位。

SMAPE vs MAPE:SMAPE 在处理分母为零的情况时更稳健,因为分母考虑了真实值与预测值的绝对值的和。

MAE vs MAPE:MAE: MAE 的单位与原始数据的单位相同,因为它是误差的平均绝对值。
MAPE: MAPE 的结果是以百分比形式表示的,不受原始数据单位的影响。它以百分比来度量相对误差。

均方误差(Mean Absolute Error,MAE)和平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)在不同的应用场景中可能更适用,取决于对误差度量的不同关注点。以下是它们适用场景的一些特点:

MAE 的适用场景:

误差大小关键: 当关注模型预测的绝对误差的大小时,MAE 是一个合适的选择。它直接度量了预测误差的平均绝对值,对于业务问题中误差的实际大小提供了直观的度量。

MAPE 的适用场景:

相对误差关键: 当关注模型预测的相对误差的大小时,MAPE 是更合适的选择。它将每个样本的绝对误差与相应的真实值的百分比进行比较,更强调相对误差的百分比。数据具有不同尺度: MAPE 在处理具有不同尺度的数据时可能更为合适,因为它以百分比形式提供了一个相对的度量,不受原始数据单位的影响。MAPE因此可以适用于不同数据集之间的比较。

常用方法

统计方法
机器学习方法
深度学习方法
基于transformer的方法
基于预训练大模型的方法

实验设计

1.不同时间序列任务:预测、分类、异常检测
2.不同类型任务:监督、自监督、迁移
3.数据集:zero-shot,one-shot,all
4.变量:多预测多,多预测单、单预测单、部分变量预测
5.训练方法:fine-tuning, linear probing, and supervising from scratch
6.消融实验:w/o replace 超参数
LookbackWindow(seq_len)
pred_len
patch_len
patch_num
关于超参数的实验往往使用图来展示
7.指标:性能相关:mse、mae;效率:时间;体量:参数量

实验分析

CKA相似度
SHAP
除了SHAP之外,还有一些其他用于解释机器学习模型的方法。这些方法各有特点,适用于不同类型的模型和任务。以下是一些常见的模型解释方法:

1.LIME(Local Interpretable Model-agnostic Explanations): LIME是一种模型无关的局部解释方法,它通过在局部生成一个简单的可解释模型来解释黑盒模型的预测。LIME通过在输入空间中生成随机样本,观察它们的模型输出,然后拟合一个简单的解释模型,以近似原始模型在该点的行为。
2.Feature Importance(特征重要性): 这是一种简单但常用的解释方法,通过分析模型中各个特征对于输出的相对重要性。随机森林、决策树等模型通常提供特征重要性的直接输出。
3.Partial Dependence Plots(偏依赖图): 偏依赖图显示模型输出与某个特征之间的关系,保持其他特征不变。通过观察这些图表,可以了解模型是如何对单个特征进行响应的。
4.Shapley Regression Values(SRV): 类似于SHAP值,SRV是一种基于博弈论的解释方法,用于解释回归模型的预测。它提供了每个特征对于整体预测的贡献。
5.TreeInterpreter: 针对树模型(如决策树和随机森林),TreeInterpreter可以解释单个预测是如何通过模型的各个树来形成的。
6.LASSO Regression: 在线性回归中,使用LASSO(Least Absolute Shrinkage and Selection Operator)进行特征选择,可以得到一个稀疏模型,从而识别对输出有重要贡献的特征。
7.Global Surrogate Models: 这是一种通过在原始模型周围训练一个可解释的替代模型来解释复杂模型的方法。例如,用一个简单的线性模型来近似复杂的深度学习模型。

选择合适的解释方法取决于具体的问题、模型和数据。通常,结合多种解释方法可以提供更全面的理解。值得注意的是,不同的解释方法对于不同类型的模型和任务可能具有不同的适用性和可解释性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/239757.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL语句练习题(持续更新~)

表名和字段 –1.学生表 Student(s_id,s_name,s_birth,s_sex) --学生编号,学生姓名, 出生年月,学生性别 –2.课程表 Course(c_id,c_name,t_id) – --课程编号, 课程名称, 教师编号 –3.教师表 Teacher(t_id,t_name) --教师编号,教师姓名 –4.成绩表 Score(s_id,c_id,s_score) --…

【AI】人工智能复兴的推进器之机器学习

目录 一、机器学习的定义 二、机器学习的发展历程 2.1 萌芽期(20世纪50年代-60年代) 2.2 符号主义时期(20世纪60年代-80年代) 2.3 统计学习时期(20世纪90年代-21世纪初) 2.4 深度学习时期&#xff08…

深度剖析Ajax实现方式(原生框架、JQuery、Axios,Fetch)

Ajax学习 简介: ​ Ajax 代表异步 JavaScript 和 XML(Asynchronous JavaScript and XML)的缩写。它指的是一种在网页开发中使用的技术,通过在后台与服务器进行数据交换,实现页面内容的更新,而无需刷新整个…

高级算法设计与分析(六) -- 分支限界法

系列文章目录 高级算法设计与分析(一) -- 算法引论 高级算法设计与分析(二) -- 递归与分治策略 高级算法设计与分析(三) -- 动态规划 高级算法设计与分析(四) -- 贪心算法 高级…

RIPV1配置实验

查看路由器路由表: 删除手工配置的静态路由项: Route1->Config->static Remove删除路由项 删除Route3的路由项,方法同上删除Route2的路由项,方法同上 完成路由器RIP配置: Route1->Config->RIP->Ne…

lv12 根文件系统12

目录 1 根文件系统 2 BusyBox 3 实验九 3.1 在 busybox 官网下载 busybox 源码(这里我们下载 busybox-1.22.1.tar.bz2) 3.2 拷贝 busybox 源码包到 ubuntu 的家目录下,解压并进入其顶层目录 3.3 进入 busybox 配置界面(…

新零售模式:重新定义商业未来

随着科技的飞速发展,我们的生活方式正在经历着前所未有的变革。其中,新零售模式正逐渐成为商业领域的新热点,它正在重新定义我们的购物方式,并为企业带来更多的商业机会。 一、新零售模式概述 新零售模式是指将互联网、大数据、…

在 Windows 中关闭指定端口的方法

方法一&#xff1a;使用命令行&#xff08;Command Prompt&#xff09; 查找端口占用情况 打开命令提示符&#xff08;Command Prompt&#xff09;并输入以下命令来查找占用指定端口的进程&#xff1a; netstat -aon|findstr "<port_number>" 这里的 <p…

[已解决] Ubuntu远程桌面闪退+登录显示“远程桌面由于数据加密错误 , 这个会话将结束“

两个月前&#xff0c;由于跑代码在Ubuntu配置环境&#xff0c;乱七八糟的下载了很多东西&#xff0c;导致了一系列问题..... 问题1 Ubuntu远程桌面闪退 实验室有两台服务器&#xff0c;IP后三位分别为141和142&#xff0c;其中141在输入密码后立即闪退&#xff0c;142可以正常…

Linux下 自定义多线程并发快速压缩解压缩脚本

文章目录 自定义多线程压缩解压缩脚本使用 Linux下 自定义多线程并发快速压缩解压缩脚本 Linux下常用的tar工具无法支持并行 压缩和解压&#xff0c;对于大量小文件的解压缩&#xff0c;可借助pigz工具实现多线程并行工作&#xff0c;实现更为高效的压缩和解压缩。 自定义多线…

【分享】4个方法打开PDF文件

PDF是很多人工作中经常使用的电子文档格式&#xff0c;但是可能有些刚接触的小伙伴不知道用什么工具来打开PDF文件&#xff0c;今天小编就来分享一下4种常用的工具。 1. 使用浏览器 只要有电脑基本都会安装一到两款浏览器&#xff0c;其实浏览器也可以用来打开PDF文件。 只需…

B2122 单词翻转

B2122 单词翻转 [B2122 单词翻转]&#xff08;https://www.luogu.com.cn/problem/B2122?contestId150480 B2122 单词翻转 题意 输入一串字符&#xff0c;将它倒着输出&#xff0c;但是&#xff0c;单词之间要换行&#xff0c;才能输出。 思路 先写for循环&#xff0c;在往上…

python 用OpenCV 将图片转视频

import os import cv2 import numpy as npcv2.VideoWriter&#xff08;&#xff09;参数 cv2.VideoWriter() 是 OpenCV 中用于创建视频文件的类。它的参数如下&#xff1a; filename&#xff1a;保存视频的文件名。 fourcc&#xff1a;指定视频编解码器的 FourCC 代码&#xf…

经常使用的排序算法

一、直接插入排序 #include <stdio.h>void insert_sort(int arr[], int n){int i, j, tmp;for (i 1; i < n; i){tmp arr[i];j i - 1;while (j > 0 && arr[j] > tmp){ // 将要插入的元素与数组中的元素比较&#xff08;从后向前比&#xff09;arr[j …

Redis可视化工具Redis Desktop Manager mac功能特色

Redis Desktop Manager mac是一款非常实用的Redis可视化工具。RDM支持SSL / TLS加密&#xff0c;SSH隧道&#xff0c;基于SSH隧道的TLS&#xff0c;为您提供了一个易于使用的GUI&#xff0c;可以访问您的Redis数据库并执行一些基本操作&#xff1a;将键视为树&#xff0c;CRUD键…

【springboot】功能合集

目录 全局监听请求&#xff1a;HandlerInterceptor创建拦截器类添加拦截器拦截器类调用Service服务 全局异常处理&#xff1a;ExceptionHandler统一处理业务异常自定义JsonResult 全局跨域配置&#xff1a;WebMvcConfigurer静态(static)方法中调用接口&#xff08;Service层&am…

PDF.js介绍以及使用

一、PDF.js是什么 PDF.js是一个JavaScript库&#xff0c;可以在现代Web浏览器中渲染和显示PDF文件。它的主要作用是将PDF文件转换为HTML5格式&#xff0c;以便在浏览器上进行展示和交互。 PDF.js的主要功能包括&#xff1a; 在浏览器中显示PDF&#xff1a;PDF.js使用HTML5的…

hab_virtio hypervisor 虚拟化

Linux的 I / O 虚拟化 Virtio 框架 简而言之&#xff0c;virtio是半虚拟化管理程序中设备上的抽象层。virtio由Rusty Russell开发以支持他自己的虚拟化解决方案lguest。本文从准虚拟化和仿真设备的介绍开始&#xff0c;然后探讨的细节virtio。重点是virtio2.6.30内核发行版中的…

Pytorch:torch.sum()函数用法

torch.sum() 先看看官网描述&#xff1a;https://pytorch.org/docs/stable/generated/torch.sum.html#torch.sum 函数torch.sum有两种形式&#xff1a; 第一种&#xff1a;   torch.sum(input, *, dtypeNone) → Tensor .   Returns the sum of all elements in the inp…

【华为数据之道学习笔记】6-4 打造数据供应的“三个1”

数据服务改变了传统的数据集成方式&#xff0c;所有数据都通过服务对外提供&#xff0c;用户不再直接集成数据&#xff0c;而是通过服务获取。因此&#xff0c;数据服务应该拉动数据供应链条的各个节点&#xff0c;以方便用户能准确地获取数据为重要目标。 数据供应到消费的完整…