动物分类识别教程+分类释义+界面展示

1.项目简介

动物分类教程+分类释义+界面展示

动物分类是生物学中的一个基础知识,它是对动物进行分类、命名和描述的科学方法。本教程将向您介绍动物分类的基本原则和方法,并提供一些常见的动物分类释义。

  1. 动物分类的基本原则

动物分类根据动物的形态、结构、生活习性、遗传等特征进行分类。动物分类的基本原则包括以下几点:

(1)分类的基础:分类应该以形态学为基础,主要从外部形态、内部结构、发育过程和生理生化特征等方面进行分类。

(2)系统的体系分类:采用分层次、阶梯式的分类方法,把各个分类单元按一定顺序排列成一个大的分类系统。

(3)分类的稳定性:分类的稳定性是指在一定的时间和空间范围内,由于物种的进化和分化关系而形成的分类不会轻易发生变动。

  1. 常见动物分类释义

(1)哺乳动物:是一类具有乳腺并能哺育幼崽的动物,如猫、狗、猪、牛等。

(2)鸟类:是一类具有翅膀和羽毛的脊椎动物,如鹰、鸽子、鸡等。

(3)爬行动物:是一类冷血动物,具有鳞片、角质板、甲壳等外壳,如蛇、龟、鳄鱼等。

(4)两栖动物:是一类既能在水中生活,也能在陆地上生活的动物,如青蛙、蝾螈等。

  1. 界面展示

本教程提供了一个简单易用的动物分类界面,用户可以上传自己拍摄的动物图片,系统会自动识别出动物的种类,并显示相应的分类释义。同时,用户还可以通过界面查看其他用户上传的动物图片及其分类结果,以便更好地了解动物分类知识。

总之,本教程旨在向广大用户介绍动物分类的基本原则和方法,帮助用户更好地了解动物世界,同时提供一个方便快捷的界面,让用户可以轻松地进行动物分类。
在这里插入图片描述

主要功能:利用tinker封装InceptionV3[论文]MOD进行图像分类的一个小Demo

环境anaconda+Python3+tensorflow

IDEpycharm + jupyter notebook

2.代码框架

需要的库模块:

  • os
    tarfile
    requests
    tensorflow
    numpy
    translate
    PIL
    

一共四个代码文件:

  • get_Inception_model.py

    方法模块,下载模型将模型保存到本地

    def download_inception_model(): #下载模型将模型保存到本地'......'
  • nodelookup.py

    类文件,主要功能将官方标签解码成可读文本

    class NodeLookup(object):def __init__(self):self.node_lookup  # 字典,id to string'......'@staticmethoddef _load(labels_path, uids_path):  # 输入:node_id, 输出:id to string字典'......'return dictdef id_to_string(self, node_id):  # 输入:node_id, 输出:可读字符串'......'return str
    
  • tensorflow_predictor.py

    类文件,主要功能实现图像预测

    class TensorflowPredictor():def __init__(self):  # 加载模型,新建session,'......'def predict_image(self, image_path):  # '......'return str
  • gui.py

    界面代码,面向用户

    btn_sel  # 选择图片按钮
    img_label  # 这是是显示预测图片的全局变量
    res_label  # 这是是显示预测文字的全局变量def translator_prediction_result(pre_res):# 翻译模块 输入:英文字符串,输出:格式化中文字符串'......'return resdef selector_image():  # 选择图片按钮点击发生的事件'......'root.mainloop()  # 进入消息循环
    

3.实现细节

3.1.下载模型

3.1.1.实现功能

下载模型将模型保存到本地

3.1.2.Inception文件简介

Inception_v3模型源码下载

Inception为Google开源的CNN模型,至今已经公开四个版本,每一个版本都是基于大型图像数据库ImageNet中的数据训练而成。因此我们可以直接利用Google的Inception模型来实现图像分类。本项目主要以Inception_v3模型为基础。分类一张图像可以在几秒内完成。

3.1.3.流程图

Created with Raphaël 2.3.0 不存在"inception_model"文件夹? 创建"inception_model"文件夹 下载模型压缩包inception-2015-12-05.tgz 解压inception-2015-12-05.tgz 打印"Done." 结束 yes no

3.1.4.代码

# get_Inception_model.pyimport tarfile
import requestsdef download_inception_model():# inception_v3模型下载inception_pre_mod_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'# 模型存放地址inception_pre_mod_dir = "inception_model"if not os.path.exists(inception_pre_mod_dir):os.makedirs(inception_pre_mod_dir)# 获取文件名,以及文件路径filename = inception_pre_mod_url.split('/')[-1]filepath = os.path.join(inception_pre_mod_dir, filename)# 下载模型if not os.path.exists(filepath):print('Downloading: ', filename)r = requests.get(inception_pre_mod_url, stream=True)with open(filepath, 'wb') as f:for chunk in r.iter_content(chunk_size=1024):if chunk: f.write(chunk)print("Done: ", filename)# 解压文件tarfile.open(filepath, 'r:gz').extractall(inception_pre_mod_dir)

3.2.标签解码

3.2.1.实现功能

将标签编码和标签内容一一对应(解码)

3.2.2.文件

官方下载的文件夹下有两个文件

  • imagenet_synset_to_human_label_map.txt

在这里插入图片描述

  • imagenet_2012_challenge_label_map_proto.pbtx

在这里插入图片描述

target_class对应着一个class_string,这里我们要做的任务就是将traget_class与human_string一一对应

3.2.3.代码

# nodelookup.pyimport tensorflow.compat.v1 as tf
tf.disable_v2_behaviorclass NodeLookup(object):def __init__(self):labels_path = 'inception_model/imagenet_2012_challenge_label_map_proto.pbtxt'uids_path = 'inception_model/imagenet_synset_to_human_label_map.txt'self.node_lookup = self.load(labels_path, uids_path)@staticmethoddef _load(labels_path, uids_path):uid_to_human = {}for line in tf.gfile.GFile(uids_path).readlines():items = line.strip('\n').split('\t')uid_to_human[items[0]] = items[1]node_id_to_uid = {}for line in tf.gfile.GFile(labels_path).readlines():if line.startswith('  target_class:'):target_class = int(line.split(': ')[1])if line.startswith('  target_class_string:'):target_class_string = line.split(': ')[1]node_id_to_uid[target_class] = target_class_string[1:-2]node_id_to_name = {}for key, val in node_id_to_uid.items():name = uid_to_human[val]node_id_to_name[key] = namereturn node_id_to_namedef id_to_string(self, node_id):if node_id not in self.node_lookup:return ''return self.node_lookup[node_id]

3.3.运行模型

3.3.1.流程图

Created with Raphaël 2.3.0 图像文件 模型预测函数 预测结果字符串

3.3.2.代码

import tensorflow.compat.v1 as tftf.disable_v2_behavior
import numpy as np
import nodelookupclass TensorflowPredictor():def __init__(self):self.sess = tf.Session()with tf.gfile.FastGFile('./inception_model/classify_image_graph_def.pb', 'rb') as f:graph_def = tf.GraphDef()  # 定义一个计算图graph_def.ParseFromString(f.read())  #tf.import_graph_def(graph_def, name='')self.softmax_tensor = self.sess.graph.get_tensor_by_name('softmax:0')def predict_image(self, image_path):# 载入图片image_data = tf.gfile.FastGFile(image_path, 'rb').read()predictions = self.sess.run(self.softmax_tensor, {'DecodeJpeg/contents:0': image_data})  # 图片格式是jpg格式predictions = np.squeeze(predictions)  # 把结果转为1维# 打印图片路径及名称res_str = ''res_str += '图片路径: ' + image_path + '\n'# 排序top_k = predictions.argsort()[-5:][::-1]node_lookup = nodelookup.NodeLookup()for node_id in top_k:# 获取分类名称name_str = node_lookup.id_to_string(node_id)# 获取该分类的置信度score = predictions[node_id] * 100res_str += '(%.2f' % (score) + '%), ' + name_str + '\n'return res_str

3.4.GUI

3.4.1.运行图

在这里插入图片描述

3.4.2.代码

import os
import tkinter
from tkinter import *
from tkinter import filedialog
from PIL import ImageTk
from translate import Translatorimport get_Inception_model
from tensorflow_predictor import TensorflowPredictorroot = tkinter.Tk()  # 生成root主窗口
root.title("图像分类")  # 设置窗体标题
root.geometry("800x800")  # 设置窗体大小if not os.path.exists('./inception_model/classify_image_graph_def.pb'):  # 如果没下载model,则下载modelget_Inception_model.download_inception_model()  # 下载modeltranslator = Translator(to_lang="chinese")  # 新建Translator对象def translator_prediction_result(pre_res):  # 翻译模块res = pre_res.split("\n")[0] + '\n'for line in pre_res.split("\n")[1:-1]:s = translator.translate(line.split(',')[1])res += line + " (机翻结果: " + s + ")\n"return res  # 返回翻译结果img_label = Label(root, width='800', height='533')  # 这是是显示预测图片的全局变量
res_label = Label(root)  # 这是是显示预测文字的全局变量
pdt = TensorflowPredictor()  # 新建预测类(自己写的)def selector_image():  # 选择图片按钮点击发生的事件img_path = filedialog.askopenfilename(initialdir='./images')  # 弹窗选择图像文件返回图像地址pre_res = pdt.predict_image(image_path=img_path)  # 利用地址调用预测函数返回结果字符串pre_res = translator_prediction_result(pre_res)  # 机器翻译结果字符串photo = ImageTk.PhotoImage(file=img_path)img_label.config(imag=photo)  # 更新图片img_label.pack()res_label.config(text=pre_res, justify=LEFT)  # 更新文字res_label.pack()root.mainloop()  # 进入消息循环returnbtn_sel = tkinter.Button(root, text='选择图片', command=selector_image)  # 选择图片按钮
btn_sel.pack()root.mainloop()  # 进入消息循环(必需组件)
果字符串photo = ImageTk.PhotoImage(file=img_path)img_label.config(imag=photo)  # 更新图片img_label.pack()res_label.config(text=pre_res, justify=LEFT)  # 更新文字res_label.pack()root.mainloop()  # 进入消息循环returnbtn_sel = tkinter.Button(root, text='选择图片', command=selector_image)  # 选择图片按钮
btn_sel.pack()root.mainloop()  # 进入消息循环(必需组件)

总结

  • Inception 是一种深度学习模型,主要用于图像分类任务。它是由 Google 团队于 2014 年开发的,并在 ImageNet
    图像识别竞赛中取得了很好的成绩。
  • Inception 模型的设计目标是在保持高准确率的同时,降低模型的计算复杂度。它采用了一种称为 Inception
    模块的特殊结构,该模块可以同时应用多个不同大小的卷积核和池化操作,并将它们的输出拼接在一起。这样可以捕捉到不同尺度和层次的图像特征。
  • Inception
    模型的核心思想是使用多个并行的卷积操作来处理输入图像,并通过合并它们的输出来提取更丰富的特征表示。这种设计可以减少网络的参数数量,并增加模型的计算效率。
  • Inception 模型的经典版本是 Inception V3,它包含多个 Inception
    模块,每个模块都包含多个并行的卷积和池化操作。Inception V3 在 ImageNet
    数据集上取得了很好的性能,同时也被广泛应用于其他图像分类任务。

除了 Inception V3,还有其他版本的 Inception 模型,如 Inception V1、Inception V2 等,每个版本在模型结构和性能上都有所不同。

总结起来,Inception 是一种用于图像分类任务的深度学习模型,通过使用多个并行的卷积操作和池化操作来提取图像特征。它在准确率和计算效率方面取得了良好的平衡,并被广泛应用于图像分类领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/239593.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3老项目如何引入vite

vue3老项目如何引入vite 安装 npm install vite vitejs/plugin-vue --save-dev Vite官方中文文档修改package.json文件 在 npm scripts 中使用 vite 执行文件 "scripts": {"serve": "vite","build": "vite build","pr…

听GPT 讲Rust源代码--src/tools(22)

File: rust/src/tools/tidy/src/lib.rs rust/src/tools/tidy/src/lib.rs是Rust编译器源代码中tidy工具的实现文件之一。tidy工具是Rust项目中的一项静态检查工具,用于确保代码质量和一致性。 tidy工具主要有以下几个作用: 格式化代码:tidy工具…

Rust报错:the msvc targets depend on the msvc linker but `link.exe` was not found

当我在我的 windows 电脑上安装 rust,然后用 cargo 新建了一个项目后,cargo run 会报错: error: linker link.exe not found| note: program not foundnote: the msvc targets depend on the msvc linker but link.exe was not foundnote: p…

css学习笔记6(盒子模型)

CSS盒子模型 五、CSS盒子模型1.CSS长度单位2.元素的显示模式3.总结各元素的显示模式4.修改元素显示模式5.盒子模型的组成6.盒子内容区(content)7.关于默认宽度8.盒子内边距(padding)9.盒子边框(border)10.盒…

Apache Flink 进阶教程(七):网络流控及反压剖析

目录 前言 网络流控的概念与背景 为什么需要网络流控 网络流控的实现:静态限速 网络流控的实现:动态反馈/自动反压 案例一:Storm 反压实现 案例二:Spark Streaming 反压实现 疑问:为什么 Flink(bef…

基于Netty构建Websocket服务端

除了构建TCP和UDP服务器和客户端,Netty还可以用于构建WebSocket服务器。WebSocket是一种基于TCP协议的双向通信协议,可以在Web浏览器和Web服务器之间建立实时通信通道。下面是一个简单的示例,演示如何使用Netty构建一个WebSocket服务器。 项目…

深圳鼎信|输电线路防山火视频监控预警装置:森林火灾来袭,安全不留白!

受线路走廊制约和环保要求影响,输电线路大多建立在高山上,不仅可以减少地面障碍物和人类活动的干扰,还能提高线路的抗灾能力和可靠性。但同时也会面临其它的难题,例如森林火灾预防。今天,深圳鼎信智慧将从不同角度分析…

signaltap立即触发的错误解决方法

signaltap点下run analysis后没有等到触发条件满足就触发了,原因是触发方式设置错误,应修改触发方式: 将Trigger flow control 从State-based 改为Sequential。

trino-435版本windows下源码编译

一、源码下载地址 https://github.com/trinodb/trino/tags 二、编译环境及工具准备 1、maven &#xff08;1&#xff09;版本&#xff1a;3.6.3 &#xff08;2&#xff09;settings.xml配置 <?xml version"1.0" encoding"UTF-8"?> <settin…

Jmeter 性能测试 —— 评估一个系统TPS与并发数!

问题&#xff1a;性能压测&#xff0c;如何评估一个系统的TPS和并发数&#xff1f; 1、对于新系统 由业务部门或开发人员预估交易量和TPS指标 可以参考公式&#xff1a;并发用户 在线用户数 * 10%。 当一个系统还没有上线时&#xff0c;我们可以预判的是这个系统准备要给多…

【数据结构】队列的使用|模拟实现|循环队列|双端队列|面试题

一、 队列(Queue) 1.1 概念 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有先进先出FIFO(First In First Out) 入队列&#xff1a;进行插入操作的一端称为队尾&#xff08;Tail/Rear&#xff09; 出队列…

深度剖析:Golang中结构体方法的高级应用

深度剖析&#xff1a;Golang中结构体方法的高级应用 引言结构体方法的基础回顾结构体的定义和用法方法的定义和绑定基本语法和用法 高级特性与应用封装、继承和多态方法集与接口的关系结构体方法的匿名字段和嵌入结构体 性能优化与最佳实践接收器类型的选择&#xff1a;指针还是…

文档 - - - Docsify文档创建

目录 1. Docsify 介绍2. 创建 Docsify 项目2.1 安装 Node.js2.1 安装 docsfiy-cli2.3 初始化项目2.4 运行项目2.5 使用 Python 运行项目&#xff08;扩展&#xff0c;不推荐有bug&#xff09; 3. 配置 Docsify 项目3.1 修改等待加载文字3.2 添加网站 ico 图标3.3 创建新页面写文…

Redux与React环境准备、实现counter(及传参)、异步获取数据

环境说明&#xff1a; 一&#xff1a;说明 在React中使用redux&#xff0c;官方要求安装两个其他插件&#xff1a;Redux Toolkit和react-redux 1. Redux ToolKit(RTK) - 官方推荐编写Redux逻辑的方式&#xff0c;是一套工具的集合集&#xff0c;简化书写方式 &#xff08;简化…

【数据结构之单链表】

数据结构学习笔记---003 数据结构之单链表1、什么是单链表?1.1、概念及结构 2、单链表接口的实现2.1、单链表的SList.h2.1.1、定义单链表的结点存储结构2.1.2、声明单链表各个接口的函数 2.2、单链表的SList.c2.2.1、遍历打印链表2.2.2、销毁单链表2.2.3、打印单链表元素2.2.4…

VM进行TCP/IP通信

OK就变成这样 vm充当服务端的话也是差不多的操作 点击连接 这里我把端口号换掉了因为可能被占用报错了&#xff0c;如果有报错可以尝试尝试换个端口号 注&#xff1a; 还有一个点在工作中要是充当服务器&#xff0c;要去网络这边看下他的ip地址 拉到最后面

【github】github设置项目为私有

点击setting change to private 无脑下一步

web架构师编辑器内容-创建业务组件和编辑器基本行为

编辑器主要分为三部分&#xff0c;左侧是组件模板库&#xff0c;中间是画布区域&#xff0c;右侧是面板设置区域。 左侧是预设各种组件模板进行添加 中间是使用交互手段来更新元素的值 右侧是使用表单的方式来更新元素的值。 大致效果&#xff1a; 左侧组件模板库 最初的模板…

基于JSP+Servlet+Mysql的调查管理系统

基于JSPServletMysql的调查管理系统 一、系统介绍二、功能展示1.项目内容2.项目骨架3.数据库3.登录4.注册3.首页5.系统管理 四、其它1.其他系统实现五.获取源码 一、系统介绍 项目名称&#xff1a;基于JSPServlet的调查管理系统 项目架构&#xff1a;B/S架构 开发语言&#…

在Next.js和React中搭建Cesium项目

在Next.js和React中搭建Cesium项目&#xff0c;需要确保Cesium能够与服务端渲染(SSR)兼容&#xff0c;因为Next.js默认是SSR的。Cesium是一个基于WebGL的地理信息可视化库&#xff0c;通常用于在网页中展示三维地球或地图。下面是一个基本的步骤&#xff0c;用于在Next.js项目中…