Python to_numeric函数参数解读与最佳实践!

更多资料获取

📚 个人网站:ipengtao.com


Python中的to_numeric函数是pandas库提供的一个强大而灵活的工具,用于将数据转换为数字类型。本文将深入探讨to_numeric函数的各种参数和用法,通过丰富的示例代码帮助大家更全面地理解和运用这一功能。

基本介绍

1 语法

pandas.to_numeric(arg, errors='raise', downcast=None)

2 参数解释

  • arg: 待转换的数据,可以是SeriesDataFrame、列表、数组等。
  • errors: 控制遇到无法转换的值时的处理方式,可选值包括'raise'(默认,抛出异常)、'coerce'(将无法转换的值设置为NaN)和'ignore'(保留原始值)。
  • downcast: 控制数值类型的转换,可选值包括'integer''signed''unsigned''float',用于降低数据类型的精度。

示例代码

1 基本用法

import pandas as pd# 通过列表创建Series
data = ['42', 123, 'foo', 456.789]
s = pd.Series(data)# 使用to_numeric进行转换
result = pd.to_numeric(s, errors='coerce')print(result)

2 处理错误值

import pandas as pd# 包含错误值的列表
data = ['42', 'error', 123, 'foo', 456.789]# 使用to_numeric,将无法转换的值设为NaN
result = pd.to_numeric(data, errors='coerce')print(result)

3 数值类型降级

import pandas as pd# 创建DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4.0, 5.0, 6.0]})# 将整数列降级为无符号整数
df['A'] = pd.to_numeric(df['A'], downcast='unsigned')# 将浮点数列降级为单精度浮点数
df['B'] = pd.to_numeric(df['B'], downcast='float')print(df.dtypes)

错误处理的更多选项

to_numeric函数的errors参数提供了多种处理错误值的选项,使得在处理不规范数据时更加灵活。

import pandas as pd# 包含错误值的列表
data = ['42', 'error', 123, 'foo', 456.789]# 使用to_numeric,将无法转换的值设为0
result = pd.to_numeric(data, errors='coerce', downcast='integer').fillna(0).astype(int)print(result)

在上述例子中,使用errors='coerce'将无法转换的值设置为NaN,然后使用.fillna(0)将NaN值填充为0,最后使用.astype(int)将数据类型转换为整数。

应用于整个DataFrame

to_numeric同样适用于整个DataFrame,对多列进行批量转换。

import pandas as pd# 创建含有错误值的DataFrame
df = pd.DataFrame({'A': ['42', 'error', 123, 'foo', 456.789],'B': ['789', 10, 'bar', 20, 30]})# 对整个DataFrame进行转换,将无法转换的值设为NaN
df_numeric = df.apply(pd.to_numeric, errors='coerce')print(df_numeric)

通过apply方法,能够在整个DataFrame上应用to_numeric,实现对多列数据的一次性转换。

处理日期数据

to_numeric函数还可以处理包含日期字符串的数据,将其转换为相应的时间戳。

import pandas as pd# 包含日期字符串的列表
date_data = ['2022-01-01', '2022-02-01', 'error', '2022-03-01']# 使用to_numeric,将无法转换的值设为NaT(Not a Time)
result = pd.to_numeric(date_data, errors='coerce', downcast='integer', format='%Y-%m-%d')print(result)

在这个例子中,使用format='%Y-%m-%d'参数告诉to_numeric函数日期的格式,确保正确转换日期字符串为时间戳。

高效处理大数据集

对于大型数据集,可以通过使用pd.to_numericdowncast参数来优化内存占用。

import pandas as pd
import numpy as np# 创建一个包含大量整数的DataFrame
df_large = pd.DataFrame({'A': np.arange(1, 1000001), 'B': np.arange(1000001, 2000001)})# 查看DataFrame的内存占用
print("内存占用(MB):", df_large.memory_usage(deep=True).sum() / (1024**2))# 使用to_numeric对整数列进行降级
df_large['A'] = pd.to_numeric(df_large['A'], downcast='unsigned')# 查看处理后的DataFrame的内存占用
print("处理后的内存占用(MB):", df_large.memory_usage(deep=True).sum() / (1024**2))

在上述例子中,通过将整数列降级为无符号整数类型,有效地减少了内存占用。这对于处理大规模数据时尤为重要。

结合其他数据清洗方法

to_numeric函数通常与其他数据清洗方法结合使用,例如fillnadropna等,以确保数据的完整性和质量。

import pandas as pd# 创建包含缺失值和错误值的Series
data = ['42', 'error', 123, 'foo', 456.789]# 使用to_numeric进行转换,将无法转换的值设为NaN
result = pd.to_numeric(data, errors='coerce')# 使用dropna去除NaN值
result_cleaned = result.dropna()print(result_cleaned)

在这个例子中,首先使用to_numeric将无法转换的值设为NaN,然后使用dropna去除NaN值,确保最终数据的纯净性。

总结

本文深入探讨了pandas库中的to_numeric函数,该函数是数据处理中的一项重要工具,特别在数据类型转换和清洗阶段发挥关键作用。通过详尽的解释和丰富的示例代码,能够全面了解该函数的各种参数和应用场景。首先介绍了to_numeric函数的基本语法和常用参数,包括argerrorsdowncast,并通过基本用法展示了其在单列数据转换中的应用。随后,我们深入探讨了更多高级用法,如处理错误值、数值类型降级、整个DataFrame的批量转换、处理日期数据等。

通过本文的示例,大家可以学会如何处理不规范数据,处理大规模数据集时如何优化内存占用,以及如何结合其他数据清洗方法,确保数据的完整性和质量。最后,强调了继续学习和探索相关主题的重要性,以更好地应对实际工作中的数据处理挑战。希望通过本文的指导,能够更加自信和高效地运用to_numeric函数,提高数据处理的效率,确保数据的质量,为更复杂的数据分析和应用奠定坚实的基础。


Python学习路线

在这里插入图片描述

更多资料获取

📚 个人网站:ipengtao.com

如果还想要领取更多更丰富的资料,可以点击文章下方名片,回复【优质资料】,即可获取 全方位学习资料包。

在这里插入图片描述
点击文章下方链接卡片,回复【优质资料】,可直接领取资料大礼包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/239288.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于thinkphp+vue的大学生校园生活服务平台sb00r

大学生一体化服务平台可以提高大学生综合服务信息管理问题的解决效率,优化大学生综合服务信息处理流程,保证大学生综合服务信息数据的安全,它是一个非常可靠,非常安全的应用程序。 运行环境:phpstudy/wamp/xammp等 开发语言&#…

CAS机制

Java中提供了很多原子操作类来保证共享变量操作的原子性。这些原子操作的底层原理都是使用了CAS机制。在使用一门技术之前,了解这个技术的底层原理是非常重要的,所以本篇文章就先来讲讲什么是CAS机制,CAS机制存在的一些问题以及在Java中怎么使…

鸿蒙应用开发初体验 HelloWorld

9 月 25 日,华为常务董事、终端 BG CEO、智能汽车解决方案 BU 董事长余承东华为秋季全场景新品发布会上介绍了鸿蒙系统的最新进展:HarmonyOS 4 发布后,短短一个多月升级用户已经超过 6000 万,成为史上升级速度最快的 HarmonyOS 版…

WebGL开发三维解剖学应用

开发基于 WebGL 的三维解剖学应用通常涉及以下步骤。这些步骤包括创建三维模型、整合交互性、优化性能等,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作。 1.三维模型创建: 首先&#xff0…

智能优化算法应用:基于白冠鸡算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于白冠鸡算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于白冠鸡算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.白冠鸡算法4.实验参数设定5.算法结果6.参考文…

vue proxy代理 和 Nginx 配置跨域

vue.config.js文件中配置的代理: devServer: {port: 9095,// open: true, // 配置项目在启动时自动在浏览器打开proxy: {/yh: { // /api是代理标识,一般是每个接口前的相同部分target: "http://192.168.5.58:8002", // 请求地址,一…

4.3【共享源】克隆实战开发之截屏(一)

一,Screen截屏介绍 Screen的截屏是指从源读取像素,然后复制到缓冲区。然后可以根据需要操纵缓冲区;它可以简单地写入文件,也可以在其他窗口或显示器中使用。 Screen API从源中读取像素,并将其复制到提供的缓冲区中以捕获截屏。缓冲区可以是pixmap或窗口缓冲区,但必须设…

众和策略:美股全线上涨 中概股大涨

当地时间12月21日,欧洲股市全线下跌,英国富时100指数、法国CAC40指数、德国DAX指数均小幅下跌。美国通胀降温,美股商场三大指数尾盘飙升,纳斯达克指数、标普500指数均涨逾1%,大型科技股多数上涨,特斯拉涨近…

SoapUI、Jmeter、Postman三种接口测试工具的比较分析!

前段时间忙于接口测试,也看了几款接口测试工具,简单从几个角度做了个比较,拿出来与诸位分享一下。本文从多个方面对接口测试的三款常用工具进行比较分析,以便于在特定的情况下选择最合适的工具,或者使用自己编写的工具…

React + valtio 响应式状态管理

Valtio 是一个很轻量级的响应式状态管理库。valtio 让数据管理在 React 和原生 JS (Vanilla) 中变得更加简单的一个库,它类似于 Vue 的数据驱动视图的理念,使用外部状态代理去驱动 React 视图来更新。 一、状态管理库 dispatch 流派(单向数据流-中心化管…

Flink 运行时[Runtime] 整体架构

一、基本组件栈 在Flink整个软件架构体系中,同样遵循着分层的架构设计理念,在降低系统耦合度的同时,也为上层用户构建Flink应用提供了丰富且友好的接口。从下图中可以看出整个Flink的架构体系基本上可以分为三层,由上往下依次是 …

MT6739/MTK6739安卓核心板规格参数_MTK平台核心板定制

安卓核心板采用联发科 MT6739 平台开发设计,搭载开放的智能 Android 操作系统。它集成 GPU PowerVR GE8100 570MHz,集成了 BASEBAND、UMCP、PMU 等核心器件,支持 2.4G5G 双频 WIFI(可支持 1*1 MIMO)、BLUETOOTH 近距离无线传输技术&#xff0…

绩效面谈-大公司提高绩效的必杀技

绩效面谈是一种人力资源管理工具,旨在评估员工绩效并为其提供反馈。其意义包括: 为提高绩效制定具体的目标和计划。通过与员工讨论绩效表现,管理人员和员工可以确定明确的目标和方向,以实现更高的绩效水平。 帮助员工理解工作环…

【组合数学】Pólya 计数理论

目录 1. 引言2. 置换群3. Burnside 引理共轭类k 不动置换类Burnside 引理 4. Plya 计数定理4.1 对点着色问题4.2 对面着色问题4.3 重复球放盒子 1. 引言 Plya 计数理论是数学中的一个分支,主要研究的是对称性在组合计数问题中的应用。该理论以匈牙利数学家乔治波利…

关于使用libnet时性能下降的问题分析

Libnet是一个用于构建和注入网络数据包的便携式框架。它提供了在IP层和链路层创建数据包的功能,以及一系列辅助和补充功能。Libnet非常适合编写网络工具和网络测试代码。一些使用libnet的项目包括arping、ettercap、ipguard、isic、nemesis、packit、tcptraceroute和…

服务器加装了14T硬盘,显示不出来,戴尔R730阵列卡配置阵列RAID0

戴尔H730阵列卡配置阵列RAID0,1,5,10_哔哩哔哩_bilibili 然后依据下面的视频进行操作,ctrlr,选raid0 戴尔H730阵列卡配置阵列RAID0,1,5,10_哔哩哔哩_bilibili

【项目问题解决】% sql注入问题

目录 【项目问题解决】% sql注入问题 1.问题描述2.问题原因3.解决思路4.解决方案1.前端限制传入特殊字符2.后端拦截特殊字符-正则表达式3.后端拦截特殊字符-拦截器 5.总结6.参考 文章所属专区 项目问题解决 1.问题描述 在处理接口入参的一些sql注入问题,虽然通过M…

《Python Advanced Programming + Design Patterns + Clean Code》

清洁代码 — 学习如何编写可读、可理解且可维护的代码 高级Python编程知识 Python之常用设计模式 Advanced Programming装饰器 decorators生成器 & 迭代器with 上下文管理器面向对象Mixin 模式反射机制并发编程 Design Patterns设计模式分类简单工厂模式工厂模式 √抽象工厂…

2024年软件测试工程师如何从功能测试转成自动化测试?

前言 接触了太多测试同行&#xff0c;由于多数同行之前一直做手工测试&#xff0c;现在很迫切希望做[<u>自动化测试</u>](javascript:;)&#xff0c;其中不乏工作5年以上的同行。 从事软件自动化测试已经近十年&#xff0c;接触过底层服务端、API 、Web、APP、H5…

【lesson20】MySQL复合查询(1)基本查询回顾、多表查询和自连接

文章目录 基本查询回顾建表插入数据实例 多表查询建表插入数据实例 自连接建表插入数据实例 基本查询回顾 建表 插入数据 实例 查询工资高于500或岗位为MANAGER的雇员&#xff0c;同时还要满足他们的姓名首字母为大写的J 按照部门号升序而雇员的工资降序排序 使用年薪进行降…