智能优化算法应用:基于野马算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于野马算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于野马算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.野马算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用野马算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.野马算法

野马算法原理请参考:https://blog.csdn.net/u011835903/article/details/122683703
野马算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

野马算法参数如下:

%% 设定野马优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明野马算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/239246.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于ssm高校学生管理系统论文

摘 要 使用旧方法对校园活动信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在校园活动信息的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。 这次开发的高校学生管理系…

UG扫掠命令

扫掠命令在下图位置: 扫掠的规则: 1、引导线必须光顺相切,不能有尖角 2、多个截面选择顺序不能颠倒(三个或以上截面的时候) 3、多个截面选择方向必须一致 4、多个截面必须节点对应 截面或引导线可以是开放或封闭的…

springMVC-自定义拦截器

一、先来看一个需求 Spring MVC也可以使用拦截器对请求进行拦截处理,用户可以自定义拦截器来实现特定的功能,比如对临时文件的清除,或者对某些ip地址进行拦截器. 二、springMVC自定义拦截器介绍 (1)需要实现一个接口 HandlerInterceptor. (…

【Proteus仿真】【Arduino单片机】蓝牙遥控小车

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器,使LCD1602液晶,L298电机,直流电机,HC05/06蓝牙模块等。 主要功能: 系统运行后,LCD1602…

内网渗透基础

内网 内网指的是内部局域网,常说的LAN(local area network)。常见家庭wifi网络和小型的企业网络,通常内部计算机直接访问路由器设备,路由器设备接入移动电信的光纤实现上网。 内部局域网可以通过交换机/防火墙组成多个…

玩转 Scrapy 框架 (一):Scrapy 框架介绍及使用入门

目录 一、Scrapy 框架介绍二、Scrapy 入门 一、Scrapy 框架介绍 简介: Scrapy 是一个基于 Python 开发的爬虫框架,可以说它是当前 Python 爬虫生态中最流行的爬虫框架,该框架提供了非常多爬虫的相关组件,架构清晰,可扩…

Android开发——添加图片

1、首先选择一张需要的图片,通过左侧的Resource Manage选择“”并选择Import Drawables 选择一张图片 并调整以下两个内容 这两个内容的作用借用谷歌官方的Android开发教程的内容: *Android 设备具有不同的屏幕尺寸(手机、平板电脑和电视等…

【Java JMM】编译和优化

1 前端编译 在 Java 技术下, “编译期” 是一个比较含糊的表述, 因为它可能指的是 前端编译器 (“编译器的前端” 更准确一些) 把 *.java 文件转变成 *.class 文件的过程Java 虚拟机的即时编译器 (常称 JIT 编译器, Just In Time Compiler) 运行期把字节码转变成本地机器码的过…

【华为鸿蒙系统学习】- HarmonyOS4.0之App项目开发|自学篇

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 💫个人格言:"没有罗马,那就自己创造罗马~" 目录 创建鸿蒙第一个App项目 项目创建 工程目录区 预览区 运行Hello World 基本工程目录 ws:工…

ROS-小海龟案例---ROS命令

ROS-小海龟案例—ROS命令 rosnoderos:节点管理命令,通过此命令可以查看、操作以及监测已经运行的ros节点: rosnode 命令 作用 rosnode list 列出当前运行的node信息 rosnode i…

Jmeter参数化 —— 循环断言多方法

1、参数化接口测试数据 注意:csv文档参数化,里面有多少条数据,就要在线程组里循环多少次,不然就只执行一次 2、添加配置元件-计数器 关于计数器: ①Starting Value:给定计数器的初始值; ②递增&#xff1a…

Java开发框架和中间件面试题(1)

1.什么是Spring框架? Spring是一种轻量级框架,旨在提高开发人员的开发效率以及系统的可维护性。 我们一般说的Spring框架就是Spring Framework,它是很多模块的集合,使用这些模块可以很方便的协助我们进行开发。这些模块是核心容器、数据访…

安卓手机如何打开ics文件?ics格式文件用什么软件打开?

什么是ics格式文件?Ics格式文件是什么呢?其实ics格式文件是一种用于保存和交换日历信息的标准格式,它通常可以保存事件的名称、时间等信息,有不少日历、待办软件在导出数据的时候,都是以ics文件导出的。 有不少网友目…

求职方略-倒金字塔型自我介绍

第一步,开头第一句话提纲挈领,点出你的主要“卖点” 自我介绍的第一句话很重要,要有足够的吸引力,有足够的信息量,还要有足够的说服力,能产生先声夺人的效果。 一般的自我介绍喜欢按照时间线索依次介绍自己的经历,例如:“我大学毕业后就进入一家大公司的研发中心,工…

java.lang.IllegalStateException: Duplicate key

序言 最近监控扫描出我们项目的某些异常信息,报错java.lang.IllegalStateException: Duplicate key xxx,看到异常来自stream流,然后定位看了一下是某位同事的代码使用stream流把List转Map集合出现重复的key异常信息。List集合A对象来源于某个…

C# WPF上位机开发(QT vs WPF)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 最近经常收到朋友们的私信,他们对C# WPF开发很感兴趣,但是呢,正当准备学习的时候,又有人告诉他们应…

Linux编程环境和软件设施安装

目录 一、Linux编程环境安装 1.yum安装 2. vim安装(文本编辑工具) 3. lrzsz安装(文件上传下载工具) (1) 搜索lrzsz安装包 (2) 在线安装lrzsz (3) 测试 二、Linux软件安装 1. 软件安装方…

Ubuntu 常用命令之 history 命令用法介绍

📑Linux/Ubuntu 常用命令归类整理 history命令在Ubuntu系统中用于显示用户执行过的命令列表。这个命令在bash shell中非常有用,特别是当你需要记住你之前执行过的命令时。 history命令的参数如下 -c:清除历史记录。-d offset:删…

Python如何生成随机图形验证码

python生成随机图形验证码 使用python生成随机图片验证码,需要使用pillow模块 1.安装pillow模块 pip install pillow 2.pillow模块的基本使用 1.创建图片 from PIL import Image #定义使用Image类实例化一个长为400px,宽为400px,基于RGB的(255,255,255)颜色的图片 img1Ima…

win11下配置visual studio 2022+PCL1.13.1

第一部分:visual studio2022 安装 vs官网网址如下:https://visualstudio.microsoft.com/zh-hans/vs/ 第一步:我们打开官网链接,按如下操作点击下载免费版本的exe文件 第二步:打开下载目录下的安装文件进行安装&#…