Pytorch常用的函数(五)np.meshgrid()和torch.meshgrid()函数解析

Pytorch常用的函数(五)np.meshgrid()和torch.meshgrid()函数解析

我们知道torch.meshgrid()函数的功能是生成网格,可以用于生成坐标;

在numpy中也有一样的函数np.meshgrid(),但是用法不太一样,我们直接上代码进行解释。

1、两者在用法上的区别

比如:我要生成下图的xy坐标点,看下两者的实现方式:

在这里插入图片描述

np.meshgrid()

>>> import numpy as np
>>> w, h = 4, 2
# 注意,此时输入的是由w和h生成的一维数组
#      此时输出的是网格x的坐标grid_x以及网格y的坐标grid_y
>>> grid_x, grid_y  = np.meshgrid(np.arange(w), np.arange(h)) >>> grid_x
array([[0, 1, 2, 3],  [0, 1, 2, 3]])
>>> grid_y
array([[0, 0, 0, 0],[1, 1, 1, 1]])

torch.meshgrid()

>>> import torch
# 注意,此时输入的是由h和w生成的一维数组(和numpy中的输入顺序相反)
#      此时输出的是网格y的坐标grid_y以及网格x的坐标grid_x(和numpy中的输出顺序相反)
>>> grid_y, grid_x =  torch.meshgrid(
...         torch.arange(h),
...         torch.arange(w)
...     )
>>> grid_x
tensor([[0, 1, 2, 3],[0, 1, 2, 3]])
>>> grid_y
tensor([[0, 0, 0, 0],[1, 1, 1, 1]])

2、应用案例

2.1 利用np.meshgrid()来画决策边界

我们可以利用np.meshgrid()来画等高线图

# 等高线图
import numpy as np
import matplotlib.pyplot as plt# 模拟海拔高度
def fz(x, y):z = (1 -x / 2 + x**5 + y**3) * np.exp(-x**2-y**2)return zw = np.linspace(-4, 4, 100)
h = np.linspace(-2, 2, 100)grid_x, grid_y = np.meshgrid(w, h)
z = fz(grid_x, grid_y)plt.figure('Contour Chart',facecolor='lightgray')
plt.title('contour',fontsize=16)
plt.grid(linestyle=':')cntr = plt.contour(grid_x, # 网格坐标矩阵的x坐标(2维数组)grid_y, # 网格坐标矩阵的y坐标(2维数组)z,      # 网格坐标矩阵的z坐标(2维数组)8,      # 等高线绘制8部分colors = 'black', # 等高线图颜色linewidths = 0.5 # 等高线图线宽
)
# 设置标签
plt.clabel(cntr, inline_spacing = 1, fmt='%.2f', fontsize=10)
# 填充颜色  大的是红色  小的是蓝色
plt.contourf(grid_x, grid_y, z, 8, cmap='jet')plt.legend()
plt.show()

在这里插入图片描述

我们可以利用np.meshgrid()来画决策边界。

from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
import numpy as npfrom sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC# 使用sklearn自带的moon数据
X, y = make_moons(n_samples=100,noise=0.15,random_state=42)# 绘制生成的数据
def plot_dataset(X,y,axis):plt.plot(X[:,0][y == 0],X[:,1][y == 0],'bs')plt.plot(X[:,0][y == 1],X[:,1][y == 1],'go')plt.axis(axis)plt.grid(True,which='both')# 画出决策边界
def plot_pred(clf,axes):w = np.linspace(axes[0],axes[1], 100)h = np.linspace(axes[2],axes[3], 100)grid_x, grid_y = np.meshgrid(w, h)# grid_x 和 grid_y 被拉成一列,然后拼接成10000行2列的矩阵,表示所有点grid_xy = np.c_[grid_x.ravel(), grid_y.ravel()]# 二维点集才可以用来预测y_pred = clf.predict(grid_xy).reshape(grid_x.shape)# 等高线plt.contourf(grid_x, grid_y,y_pred,alpha=0.2)ploy_kernel_svm_clf = Pipeline(steps=[("scaler",StandardScaler()),("svm_clf",SVC(kernel='poly', degree=3, coef0=1, C=5))]
)ploy_kernel_svm_clf.fit(X,y)plot_pred(ploy_kernel_svm_clf,[-1.5, 2.5, -1, 1.5])
plot_dataset(X, y, [-1.5, 2.5, -1, 1.5])
plt.show()

在这里插入图片描述

2.2 利用torch.meshgrid()生成网格所有坐标的矩阵

在目标检测YOLO中将图像划分为单元网格的部分就用到了torch.meshgrid()函数。

import torch
import numpy as npdef create_grid(input_size, stride=32):# 1、获取原始图像的w和hw, h = input_size, input_size# 2、获取经过32倍下采样后的feature mapws, hs = w // stride, h // stride# 3、生成网格的y坐标和x坐标grid_y , grid_x = torch.meshgrid([torch.arange(hs),torch.arange(ws)])# 4、将grid_x和grid_y进行拼接,拼接后的维度为【H, W, 2】grid_xy = torch.stack([grid_x, grid_y], dim=-1).float()# 【H, W, 2】 -> 【HW, 2】grid_xy = grid_xy.view(-1, 2)return grid_xyif __name__ == '__main__':print(create_grid(input_size=32*4))
# 生成网格所有坐标的矩阵
tensor([[0., 0.],[1., 0.],[2., 0.],[3., 0.],[0., 1.],[1., 1.],[2., 1.],[3., 1.],[0., 2.],[1., 2.],[2., 2.],[3., 2.],[0., 3.],[1., 3.],[2., 3.],[3., 3.]])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/239025.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新消息丨OpenAI灰度测试GPT-4.5-turbo,快看看,你的版本是最新的吗?

刚刚,有朋友发来消息说:OpenAI 正在灰度测试它的最新模型——GPT-4.5-turbo。 于是,赶紧测了一下,发现果然如此。 相比于之前的 GPT-4-turbo,GPT-4.5-turbo 增强了6大能力。 分别是: √效率和性能&#x…

分子生成工具 - ResGen 评测

ResGen 模型是浙江大学药学院侯廷军老师课题组2023年发表在nature machine intelligence期刊上文章Nature Machine Intelligence | Volume 5 | September 2023 | 1020–1030,题目为:《ResGen is a pocket-aware 3D molecular generation model based on …

java: -source 7 中不支持 lambda 表达式 (请使用 -source 8 或更高版本以启用 lambda 表达式)

目录 1、检查项目中 JDK 的设置: 2、检查模块中 JDK 的设置: 3、检查Idea 中的SDK设置 4、检查 IDEA 中 JDK 的设置(我出现的问题在这): 今天遇见了一个报错: 问题产生的原因是 JDK 版本太低&#xf…

【JAVA面试题】什么是深拷贝?什么是浅拷贝?

🍎个人博客:个人主页 🏆个人专栏: JAVA ⛳️ 功不唐捐,玉汝于成 目录 前言 一、解释 1. 深拷贝(Deep Copy): 2. 浅拷贝(Shallow Copy)&#xff1…

企业级“RAS”的数据平台如何炼成?

从“看报表”到“数据分析结果直接投入运营”,数字化正在深入企业经营,数据系统正在成为核心生产系统。相应的,企业对“作业挂了”、“系统崩了”、“算不出来”的容忍度越来越低——只有足够稳定、可靠、专业的数据系统,才能及时…

原生微信小程序中使用-阿里字体图标-详解

步骤一 1、打开阿里巴巴矢量图标库 网址:iconfont-阿里巴巴矢量图标库 2、搜索字体图标,鼠标悬浮点击添加入库 3、按如下步骤添加到自己的项目 步骤二 进入微信开发者工具 1、创建 fonts文件夹 > iconfont.wxss 文件,将刚才的代码复制…

python脚本传参

sys.argvargparse 第一种:argparse 简单使用: import argparse # 创建一个参数解析实例 parser argparse.ArgumentParser(descriptionParameters) # 添加参数解析 parser.add_argument(--training_epoch, typeint, default3000) parser.add_argument(…

进程间通信---无名管道

无名管道和有名管道的区别: 无名管道只能用于父进程和子进程之间通信,而有名管道可以用于任意两个进程间通信 管道工作的原理: 切记:无名管道一旦创建完成后,操作无名管道等同于操作文件,无名管道的读端/写…

Codeforces Round 862 (Div. 2)

Problem - A - Codeforces AC代码: #include<bits/stdc.h> #define endl \n //#define int long long using namespace std; const int N1e310; int a[N]; int n; void solve() {cin>>n;int ans0;for(int i1;i<n;i) cin>>a[i],ans^a[i];if(n%21){for(in…

测试开发体系介绍——测试体系介绍-L2

目录&#xff1a; 被测系统架构与数据流分析 开源项目 LiteMall 系统架构&#xff1a;开源项目 Mall 的系统架构&#xff1a;如何快速了解一家公司的架构统一建模语言 UML推荐工具梳理业务流程&#xff1a;使用思维导图分析功能点:使用时序图分析数据流:使用活动图分析测试用例…

快手×东方卫视《超省钱大会》荣获“TV地标”2023年度优秀融媒体节目

12月19日&#xff0c;“TV地标”&#xff08;2023&#xff09;电视媒体和网络视听暨“时代之声”&#xff08;2023&#xff09;广播业综合实力大型调研成果发布会在京举办&#xff0c;国家广播电视总局主管的《中国广播影视》杂志公布了此次调研榜单。快手凭借与东方卫视、京东…

2024年你的年度目标OKR制定好了吗?

标题2023年余额见底&#xff0c;2024年的FLAG都制定好了吗&#xff1f; 目标很明确&#xff0c;计划很丰满&#xff0c;执行起来又处处透着一点点乏力&#xff0c;怎么办&#xff1f; 2024年可以尝试用OKR制定目标。 OKR目标管理方法&#xff0c;既适用于企业&#xff0c;也…

flutter + firebase 云消息通知教程 (android-安卓、ios-苹果)

如果能看到这篇文章的 一定已经对手机端的 消息推送通知 有了一定了解。 国内安卓厂商这里不提都有自己的FCM 可自行查找。&#xff08;国内因无法科学原因 &#xff0c;不能使用谷歌服务&#xff09;只说海外的。 目前 adnroid 和 ios 推送消息分别叫 FCM 和 APNs。这里通过…

UG阵列面、阵列集合特征和阵列特征的区别

阵列面 对面进行阵列&#xff0c;当实体中被切除特征的时候可以使用阵列面&#xff0c;当这个命令去阵列一个实体的时候&#xff0c;阵列的是一个片体&#xff0c;优点是速度快&#xff0c;缺点是功能较简单&#xff1b; 阵列几何特征 对实体进行阵列&#xff0c;可以一次性选…

【稳定检索|投稿优惠】2024年绿色能源与电网电力系统国际会议(ICGEGPS 2024)

2024年绿色能源与电网电力系统国际会议(ICGEGPS 2024) 2024 International Conference on Green Energy and Grid Power Systems(ICGEGPS) 一、【会议简介】 2024年绿色能源与电网电力系统国际会议(ICGEGPS 2024)将在宜宾盛大召开。本次会议将聚焦绿色能源与电网电力系统的最新…

教你在Linux上安装Node并用Electron打包deb和rpm包

Windows下无法打linux版本的包&#xff0c;如果你要打linux系统的amd64架构需要找一台linux amd64的系统打包&#xff0c;也可以在amd64下打arm架构的包&#xff0c;但是不能运行&#xff0c;需要放到arm架构的系统里才能运行。 下载linux的node环境 Index of /nodejs-releas…

WinRAR如何设置和清除密码?

WinRAR是一款功能强大的压缩管理器&#xff0c;除了能把文件打包变小&#xff0c;还能给压缩包设置密码保护&#xff0c;让文件不能随意打开&#xff0c;不需要时还可以把密码取消。下面来说说具体怎么操作吧。 WinRAR根据需要可以设置单次密码和永久密码&#xff0c;我们分别…

Spring Environment 注入引起NPE问题排查

文章目录 背景原因分析1&#xff09;Spring Aware Bean 是什么&#xff1f;2&#xff09;从 Spring Bean 的生命周期入手 解决方案 背景 写业务代码遇到使用 Spring Environment 注入为 null 的情况&#xff0c;示例代码有以下两种写法&#xff0c;Environment 实例都无法注入…

Megatron模型并行研究

Megatron模型并行研究 1. 技术调研 a. Megatron-LM Megatron-LM针对的是特别大的语言模型&#xff0c;使用的是模型并行的训练方式。但和普通的模型并行不同&#xff0c;他采用的其实是张量并行的形式&#xff0c;具体来说就是将一个层切开放到不同的GPU上&#xff0c;属于层…

Java中升级属性复制转换功能

前言 在java中,经常碰到bean之间的转换,诸如Entity转VO,Entity转DTO等等,这时,经常会碰到这样一种情况,VO和DTO里面有一个字段都是来源于Entity里面,但是属性名称和属性类型都不一样,虽然转换逻辑一致但是我们还是只能手动转换,这时如果我在代码中手动转换会出现很多多…