【python】进阶--->网络编程(二)

一、分层模型

OSI/RM(开放系统互联参考模型)

是由国际标准化组织提出来的一种网络互联模型,成为所有的销售商都能实现的开放网络模型.(OSI模型提供我们理解网络协议的内部运作)
OSI模型将网络通信工作分为7层,每一层为上一层服务,并为上一层提供一个访问的接口或者界面.
越下面的层,越靠近硬件;
越上面的层,越靠近用户.
7应用层
为操作系统或网络应用程序提供网络服务的接口.
6表示层
对上层数据或信息进行变化保证主机应用层的信息可以被另一个主机的应用程序理解.数据的加密,压缩,格式转换等等.
5会话层
管理主机之间的会话进程,建立管理终止进程之间的会话.
4传输层
负责对上层数据分段,并提供端对端,可靠和不可靠的传输.
数据单位 : 数据段
典型设备 : 网关
3网络层
负责对子网间的数据包进行路由选择.
数据单位 : 数据包
设备 : 路由器
2数据链路层
在不可靠的物理媒介上进行可靠的传输.
作用 : 物理地址寻址,数据成帧,流量控制,数据检错,重发等等
数据单位 :
典型设备 : 交换机,网卡
1物理层
为上层协议提供了一个传输数据的物理媒体
数据单位 : bit
设备 : 光纤,双绞线,同轴电缆,集线器

TCP/IP模型

4应用层 : FTP,HTTP,TFTP,NFS
3传输层 : TCP,UDP
2网络层 : IP,ICMP,IGMP
1网络接口层 : ARP,RARP

ARP : 正向地址解析协议,通过已知的ip地址找到对应主机的MAC地址.
RARP : 反向地址转换协议.通过MAC地址确定ip地址.
ICMP : 互联网控制报文协议,用于在ip主机和路由器之间传递控制消息
IGMP : 是互联网组管理协议.
TCP : 传输控制协议
UDP : 用户数据报协议

在这里插入图片描述
TCP客户端

# tcp客户端
import socket
# 1.socket创建套接字
tcp = socket.socket()  # 默认是tcp套接字
# 2.建立连接connect()
tcp.connect(('172.168.1.3', 8080))
# 3.send()发送数据
sendData = input('请输入要发送的数据:')
tcp.send(sendData.encode('gbk'))
# 4.recv()接收数据
recvData = tcp.recv(1024)
print('接收:', recvData.decode('gbk'))
# 5,关闭套接字close()
tcp.close()

TCP服务器

# tcp服务器
import socket
# 1.创建套接字
tcp = socket.socket()
# 2.绑定IP地址端口号
tcp.bind(('', 8080))
# 3.监听listen()
# 使用socket套接字创建的默认属性是主动,使用listen会被动
# 这样就可以接收别人来连接
tcp.listen(5)  # 括号内表示一次可以同时接收的数量
# 4.连接accept()
# 如果有新的客户端来连接服务器,那么会产生一个新的套接字
# 专门为这个客户端服务
# clientSocket:用来为这个客户端服务的套接字
# clientAddr:客户端的IP地址和端口号
clientSocket, clientAddr = tcp.accept()
# 5.接收对方发送过来的数据
recvData = clientSocket.recv(1024)
print('客户端:', recvData.decode('gbk'))
# 6.发送一些数据给客户端
sendData = input('请输入要回复的:')
clientSocket.send(sendData.encode('gbk'))
# 7.关闭专门为这个客户端服务的套接字
clientSocket.close()

TCP案例_文件下载

import sockettcp = socket.socket()
# 连接服务器
ip = input('请输入ip地址:')
port = int(input('请输入端口号:'))
tcp.connect((ip, port))# 发送下载文件的请求
fileName = input('请输入要下载的文件名字:')
tcp.send(fileName.encode('gbk'))# 接收文件的数据并且保存到文件中
recvData = tcp.recv(100000)
if recvData:with open('[新]'+fileName, 'wb') as f:f.write(recvData)print('下载成功')
else:print('下载失败')# 关闭套接字
tcp.close()

二、网络中进程如何通信

tcp/ip中的网络层IP地址可以表示网络中的 主机,传输层”协议+端口号”可以标识主机中的进程.
利用ip地址+协议+端口号就可以标识网络中的进程.
使用tcp/ip协议的应用程序通常采用应用编程接口 : UNIX DSD的套接字(socket)
网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket.建立网络通信至少要一对socket.
http提供了封装或者显示数据的具体格式;
socket就提供了网络通信的能力.

socket的创建

import socket
s = socket.socket(AddressFamily, type)
AddressFamily:可以选择AF_INET(用于网络进程通信)或者AF_UNIX(用于同一台计算机进程间通信).默认值为AF_INET
type:套接字类型,可以SOCK_STREAM(TCP协议)或者SOCK_DGRAM(UDP协议).默认值是SOCK_STREAM.
套接字使用流程和文件的使用类似:
1.创建套接字:s = socket.socket(AddressFamily, type)
2.使用套接字收/发数据
3.关闭套接字:s.close()

文件下载服务器

import socketdef getFileContent(fileName):try:with open(fileName, 'rb') as f:fileContent = f.read()return fileContentexcept:print('下载的文件不存在')def main():tcp = socket.socket()tcp.bind(('', 8080))tcp.listen(5)# 等待客户端到来while True:clientSocket, clientAddr = tcp.accept()print('新的客户来了:', str(clientAddr))fileName = clientSocket.recv(1024).decode('gbk')print('需要下载的文件是:', fileName)# 获取文件数据fileContent = getFileContent(fileName)if fileContent:# 发送文件数据给客户端clientSocket.send(fileContent)print('发送成功')else:print('发送失败')# 关闭为这个客户端服务的套接字clientSocket.close()if __name__ == '__main__':main()

udp : 用户数据报协议 udp提供不可靠的传输,只是把应用程序传给ip层的数据报发送出去,不能保证能够到达目的地.
udp在传输数据前不用在客户端和服务器之间建立一个连接,且没有超时重传机制,所以速度非常快.
udp是面向消息的协议,通信时不需要建立连接,数据传输自然不可靠,一般用于多点通信和实时的数据业务:语音广播,视频,qq,简单文件传送等等.

在这里插入图片描述
在这里插入图片描述

UDP客户端

# udp客户端
# socket是python内置的
import socket# 1.socket()创建udp套接字
udp = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# 2.通过sendto(要发送的数据, 发送的地址)发送数据
sendAddr = ('172.168.1.3', 8080)
sendData = input('输入要发送的数据:')
udp.sendto(sendData.encode('gbk'), sendAddr)
# 阻塞等到对方发送数据才能接收到
# 3.recvfrom()接收数据,括号内表示最大接收数据
recvData = udp.recvfrom(1024)
print('recv:', recvData)
# recvfrom返回值包含两部分内容:对方发送的数据,对方的地址
# 4.关闭套接字close()
udp.close()

UDP服务器

import socket
# udp服务端
# 1.创建套接字
udp = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# 2.bind()绑定本机的ip地址和端口号
udp.bind(('172.168.1.3', 8080))
# 3.recvfrom()接收数据
recvData, recvAddr = udp.recvfrom(1024)
print(recvData.decode('gbk'))
# 4.sendto()发送数据
sendData = input('输入发送的数据:')
udp.sendto(sendData.encode('gbk'), recvAddr)
# 5.关闭套接字close()
udp.close()

UDP实战案例

import socketdef send(udp):# 1.输入对方的ip地址和端口号ip = input('请输入对方的ip地址:')port = int(input('请输入对方的端口号:'))# 2.输入要发送的数据sendData = input('请输入要发送的数据:')# 3.发送数据udp.sendto(sendData.encode('utf-8'), (ip, port))def recv(udp):# 1.接收数据recvData, recvAddr = udp.recvfrom(1024)# 2.显示数据print(recvAddr, ">>>>>>>", recvData.decode('utf-8'))if __name__ == '__main__':# 1.创建套接字udp = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)# 2.绑定端口号# '':k可以直接获取当前计算机的ip地址udp.bind(('', 8080))# 3.根据用户的选择来调用发送/接收数据while True:print('1.发送数据')print('2.接收数据')num = input('请输入选择功能:')if num == '1':send(udp)elif num == '2':recv(udp)else:udp.close()

三、tcp协议(传输控制协议)

tcp是一种面向连接的,可靠的,基于字节流的传输层通信协议.
特点 :

1.采用发送应答机制 : tcp发送的每个报文段都必须等到接收方的应答才认为这个报文段传输成功
2.超时重传:
发送端发出一个报文段之后就启动一个定时器,如果在定时时间内没有收到应答就重新发送这个报文段.
为了保证不丢包,会给每个数据包一个序号,同时序号也保证了传送到接收端的包是按照顺序接收的.然后接收端接收到之后会对对应的包发回一个确认.如果发送端没有收到确认,那么会认为数据包丢失,将会重新传送.
3.错误校验
4.流量控制和阻塞管理

在这里插入图片描述

在这里插入图片描述

关于Python网络编程(一)的介绍今天就到这里啦,后续我会为大家介绍mysql数据库的相关知识哦~
关注我,带你领略Python的风采~😍😍😍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/238704.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TCP/IP:从数据包到网络的演变

引言 TCP/IP协议的起源可以追溯到20世纪60年代末和70年代初,美国国防部高级研究计划局(ARPA)研究开发一种可靠的通信协议,用于连接分散在不同地点的计算机和资源。 在当时,计算机之间的连接并不像现在这样普遍和便捷…

RocketMQ系统性学习-RocketMQ高级特性之消息大量堆积处理、部署架构和高可用机制

🌈🌈🌈🌈🌈🌈🌈🌈 【11来了】文章导读地址:点击查看文章导读! 🍁🍁🍁🍁🍁🍁&#x1f3…

算法通关村-番外篇排序算法

大家好我是苏麟 , 今天带来番外篇 . 冒泡排序 BubbleSort 最基本的排序算法&#xff0c;最常用的排序算法 . 我们以关键字序列{26,53,48,11,13,48,32,15}看一下排序过程: 代码如下 : (基础版) class Solution {public int[] sortArray(int[] nums) {for(int i 0;i < n…

简单了解一下当前火热的大数据 -- Kylin

神兽麒麟 一、Apache Kylin 是什么&#xff1f;二、Kylin架构结语 一、Apache Kylin 是什么&#xff1f; 由eBay公司中国团队研发&#xff0c;是一个免费开源的OLAP多维数据分析引擎优点 超快的响应速度&#xff0c;亚秒级支持超大数据集&#xff08;PB以上&#xff0c;千亿记…

天津web前端就业培训班,Web机构选择重点

Web前端培训是目前非常热门的培训领域之一。很多领域都会涉及到web前端开发&#xff0c;比如传统互联网、房地产、金融、游戏、影视传媒等行业都需要web前端技术的支持。越来越多的企业和个人也需要建立自己的网站和移动应用程序&#xff0c;因此市场对web前端工程师的需求是非…

Linux 磁盘空间占满故障解决方法

故障排查&#xff1a; 使用命令查看磁盘使用量 # 使用人类可读的格式(预设值是不加这个选项的...) df -h # --inodes 列出 inode 资讯&#xff0c;不列出已使用 block df -i # 查看当前目录下各个文件及目录占用空间大小 du -sh / 情况一&#xff1a;一般磁盘空间满了&a…

【前缀和】【单调栈】LeetCode2281:巫师的总力量和

作者推荐 map|动态规划|单调栈|LeetCode975:奇偶跳 涉及知识点 单调栈 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 题目 作为国王的统治者&#xff0c;你有一支巫师军队听你指挥。 给你一个下标从 0 开始的整数数组 strength &…

isp代理/双isp代理/数据中心代理的区别?如何选择?

本文我们来详细科普一下几种不同的代理类型&#xff1a;isp代理/双isp代理/数据中心代理&#xff0c;了解他们的区别&#xff0c;选择更适合自己的代理类型。 在讲述这几种代理类型之前&#xff0c;我们先复习一下代理大类有哪几种。 一、机房代理和非机房代理 在做代理ip选…

一文弄懂kubernetes之Service

目录 ServiceService工作流程kube-proxyuserspaceiptablesIPVS EndpointsService负载分发策略Service属性Service定义多端口Service外部服务ServiceHeadless Services Service 在 kubernetes 中&#xff0c;Pod 是有生命周期的&#xff0c;如果 Pod 重启 IP 很有可能会发生变化…

【玩转TableAgent数据智能分析】借助全球高校数据多维度分析案例,体验TableAgent如何助力用户轻松洞察数据,赋能企业高效数智化转型

目录 前言 一、TableAgent介绍及其优势&#xff1f; 1、会话式数据分析&#xff0c;所需即所得 2、私有化部署&#xff0c;数据安全 3、支持企业级数据分析,大规模&#xff0c;高性能 4、支持领域微调&#xff0c;专业化 5、透明化过程&#xff0c;审计部署 二、使用Ta…

一起免费玩XG24-EK2703A板卡开发板,还有额外奖励等你拿!

hello大家好&#xff0c;我是硬核王同学&#xff0c;今天又看到了一个适合嵌入式初学者的免费参加的活动&#xff0c;迫不及待地就来跟大家分享&#xff01; Funpack活动是硬禾学堂联合DigiKey发起的“玩成功就全额退”活动。第一季和第二季已圆满结束&#xff0c;现在是第三季…

maven限制内存使用峰值/最大内存

前言 通过设置虚拟机的内存大小&#xff0c;达到限制maven内存使用峰值的效果 方法1&#xff1a;修改mvn脚本 找到mvn脚本在MAVEN_OPTS参数值添加-Xms、-Xmx参数&#xff1a;MAVEN_OPTS"$MAVEN_OPTS -Xms512m -Xmx512m"效果图 windows系统下修改MAVEN_OPTS参数 …

STM32CubeMX配置HAL库输入捕获

STM32CubeMX配置HAL库输入捕获 STM32的输入捕获功能可以用来测量脉冲宽度或者频率。其工作原理是&#xff0c;通过检测TIMx_CHx上的边沿信号&#xff0c;在边沿信号发生跳变&#xff08;比如 上升沿/下降沿&#xff09;的时候&#xff0c;将当前定时器的值&#xff08;TIMx_C…

Open3D点云处理简明教程

推荐&#xff1a;用NSDT编辑器快速搭建可编程3D场景 这是“激光雷达入门”文章的延续。 在这篇文章中&#xff0c;我们将查看用于处理点云的 python 库和 Open3D 数据结构&#xff0c;执行可视化并操作点云数据&#xff0c;以便进行后续的分析处理。 如果你需要快速预览3D点云…

乐理基础-抽象的速度

通过 乐理基础-情绪与速度、具体的速度、BPM-CSDN博客 知道了具体的速度怎样去确定&#xff0c;通过 每分钟多少拍、音符等于多少、bpm方式&#xff0c;来精确形容每一拍的持续时间。 抽象的速度 或者说 不精确的速度&#xff1a; 抽象的速度一般有两种方式&#xff1a; 第一种…

modbus异常错误码说明

异常错误码说明 其中物理离散量输入和输入寄存器只能有I/O系统提供的数据类型&#xff0c;即只能是由I/O系统改变离散量输入和输入寄存器的数值&#xff0c;而上位机程序不能改变的数据类型&#xff0c;在数据读写上表现为只读&#xff0c;而内部比特或者物理线圈和内部寄存器或…

Fiddler抓包,怎么抓抓得好抓得快?

01.什么是 Fiddler? Fiddler 是一个 HTTP 协议调试代理工具&#xff0c;它能够记录并检查所有你的电脑和互联网之间的 HTTP 通讯。Fiddler 提供了电脑端、移动端的抓包、包括 http 协议和 https 协议都可以捕获到报文并进行分析&#xff1b;可以设置断点调试、截取报文进行请求…

虾皮广告怎么做:如何在虾皮平台上进行广告投放

在虾皮&#xff08;Shopee&#xff09;平台上进行广告投放可以帮助您提高产品的曝光度和销量。通过有针对性的广告&#xff0c;您可以在虾皮平台上吸引更多的潜在买家&#xff0c;提高产品的可见度并增加销售机会。本文将为您介绍在虾皮平台上创建和管理广告的一些建议&#xf…

058:vue组件引用外部js的方法

第058个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

Git 配置多个 SSH-Key

Git 配置多个 SSH-Key &#xff08;两个都是gitee&#xff09; 先看图&#xff0c;官网固然重要&#xff0c;但是不完全行&#xff08;因为官网示例是一个gitee一个github&#xff09;&#xff0c;现在想是想多个都是gitee在他上面稍微更改即可 一般不对遇到这种问题&#xf…